The geometric approach to singular perturbation problems is based on powerful methods from dynamical systems theory. These techniques have been very successful in the case of normally hyperbolic critical manifolds. However, at points where normal hyperbolicity fails, the well-developed geometric theory does not apply. We present a method based on blow-up techniques, which leads to a rigorous geometric analysis of these problems. A detailed analysis of the extension of slow manifolds past fold points and canard points in planar systems is given. The efficient use of various charts is emphasized.
We give a geometric analysis of relaxation oscillations and canard cycles in singularly perturbed planar vector fields. The transition from small Hopf-type cycles to large relaxation cycles, which occurs in an exponentially thin parameter interval, is described as a perturbation of a family of singular cycles. The results are obtained by means of two blow-up transformations combined with standard tools of dynamical systems theory. The efficient use of various charts is emphasized. The results are applied to the van der Pol equation.
Academic Press
Systems possessing symmetries often admit heteroclinic cycles that persist under perturbations that respect the symmetry. The asymptotic stability of such cycles has previously been studied on an ad hoc basis by many authors. Sufficient conditions, but usually not necessary conditions, for the stability of these cycles have been obtained via a variety of different techniques.We begin a systematic investigation into the asymptotic stability of such cycles. A general sufficient condition for asymptotic stability is obtained, together with algebraic criteria for deciding when this condition is also necessary. These criteria are always satisfied in ℝ3 and often satisfied in higher dimensions. We end by applying our results to several higher-dimensional examples that occur in mode interactions with O(2) symmetry.
Abstract. Mixed-mode dynamics is a complex type of dynamical behavior that is characterized by a combination of small-amplitude oscillations and large-amplitude excursions. Mixed-mode oscillations (MMOs) have been observed both experimentally and numerically in various prototypical systems in the natural sciences. In the present article, we propose a mathematical model problem which, though analytically simple, exhibits a wide variety of MMO patterns upon variation of a control parameter. One characteristic feature of our model is the presence of three distinct time-scales, provided a singular perturbation parameter is sufficiently small. Using geometric singular perturbation theory and geometric desingularization, we show that the emergence of MMOs in this context is caused by an underlying canard phenomenon. We derive asymptotic formulae for the return map induced by the corresponding flow, which allows us to obtain precise results on the bifurcation (Farey) sequences of the resulting MMO periodic orbits. We prove that the structure of these sequences is determined by the presence of secondary canards. Finally, we perform numerical simulations that show good quantitative agreement with the asymptotics in the relevant parameter regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.