Cytokinins (CKs) are plant hormones affecting numerous developmental processes. Zeatin and its derivatives are the most important group of isoprenoid CKs. Zeatin occurs as two isomers: while trans-zeatin (transZ) was found to be a bioactive substance, cis-zeatin (cisZ) was reported to have a weak biological impact. Even though cisZ derivatives are abundant in various plant materials their biological role is still unknown. The comprehensive screen of land plants presented here suggests that cisZ-type CKs occur ubiquitously in the plant kingdom but their abundance might correlate with a strategy of life rather than with evolutionary complexity. Changing levels of transZ and cisZ during Arabidopsis ontogenesis show that levels of the two zeatin isomers can differ significantly during the life span of the plant, with cisZ-type CKs prevalent in the developmental stages associated with limited growth. A survey of the bioassays employed illustrates mild activity of cisZ and its derivatives. No cis↔trans isomerization, which would account for the effects of cisZ, was observed in tobacco cells and oat leaves. Differences in uptake between the two isomers resulting in distinct bioactivity have not been detected. In contrast, cisZ and transZ have a different metabolic fate in oat and tobacco. Analysis of a CK-degrading enzyme, cytokinin oxidase/dehydrogenase (CKX), reveals that Arabidopsis possesses two isoforms, AtCKX1 expressed in stages of active growth, and AtCKX7, both of which have the highest affinity for the cisZ isomer. Based on the present results, the conceivable function of cisZ-type CKs as delicate regulators of CK responses in plants under growth-limiting conditions is hypothesized.
Recent force microscopy measurements on the mechanically activated cleavage of a protein disulfide bond through reaction with hydroxide ions revealed that for forces greater than 0.5 nN, the acceleration of the reaction rate is substantially reduced. Here, using ab initio simulations, we trace this 'reactivity switch' back to a dual role played by the mechanical force, which leads to antagonistic effects. On the one hand, the force performs work on the system, and thereby accelerates the reaction. On the other hand, the force also induces a conformational distortion that involves the S-S-C-C dihedral angle, which drives the disulfide into a conformation that is shielded against nucleophilic attack because of steric hindrance. The discovery of force-induced conformational changes that steer chemical reactivity provides a new key concept that is expected to be relevant beyond this specific case, for example in understanding how 'disulfide switches' regulate protein function and for the rational design of mechanoresponsive materials.
Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces. This can be avoided by the internal contraction scheme proposed by Meyer and Siegbahn, which effectively reduces the number of wavefunction parameters to their single-reference counterpart. The "fully internally contracted" scheme (FIC) is well known from the popular CASPT2 approach. An even shorter expansion of the wavefunction is possible with the "strong contraction" (SC) scheme proposed by Angeli and Malrieu in their NEVPT2 approach. Promising multireference configuration interaction formulations (MRCI) employing internal contraction and strong contraction have been reported by several authors. In this work, we report on the implementation of the FIC-MRCI and SC-MRCI methodologies, using a computer assisted implementation strategy. The methods are benchmarked against the traditional uncontracted MRCI approach for ground and excited states of small molecules (N2, O2, CO, CO(+), OH, CH, and CN). For ground states, the comparison includes the "partially internally contracted" MRCI based on the Celani-Werner ansatz (PC-MRCI). For the three contraction schemes, the average errors range from 2% to 6% of the uncontracted MRCI correlation energies. Excitation energies are reproduced with ∼0.2 eV accuracy. In most cases, the agreement is better than 0.2 eV, even in cases with very large differential correlation contributions as exemplified for the d-d and ligand-to-metal charge transfer transitions of a Cu[NH3]4 (2+) model complex. The benchmark is supplemented with the investigation of typical potential energy surfaces (i.e., N2, HF, LiF, BeH2, ethane C-C bond stretching, and the ethylene double bond torsion). Our results indicate that the SC-scheme, which is successful in the context of second- and third-order perturbation theory, does not offer computational advantages and at the same time leads to much larger errors than the PC and FIC schemes. We discuss the advantages and disadvantages of the PC and FIC schemes, which are of comparable accuracy and, for the systems tested, also of comparable efficiency.
The reduction of disulfides has a broad importance in chemistry, biochemistry and materials science, particularly those methods that use mechanochemical activation. Here we show, using isotensional simulations, that strikingly different mechanisms govern disulfide cleavage depending on the external force. Desolvation and resolvation processes are found to be crucial, as they have a direct impact on activation free energies. The preferred pathway at moderate forces, a bimolecular S2 attack of OH at sulfur, competes with unimolecular C-S bond rupture at about 2 nN, and the latter even becomes barrierless at greater applied forces. Moreover, our study unveils a surprisingly rich reactivity scenario that also includes the transformation of concerted S2 reactions into pure bond-breaking processes at specific forces. Given that these forces are easily reached in experiments, these insights will fundamentally change our understanding of mechanochemical activation in general, which is now expected to be considerably more intricate than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.