We created a visualization tool called Circos to facilitate the identification and analysis of similarities and differences arising from comparisons of genomes. Our tool is effective in displaying variation in genome structure and, generally, any other kind of positional relationships between genomic intervals. Such data are routinely produced by sequence alignments, hybridization arrays, genome mapping, and genotyping studies. Circos uses a circular ideogram layout to facilitate the display of relationships between pairs of positions by the use of ribbons, which encode the position, size, and orientation of related genomic elements. Circos is capable of displaying data as scatter, line, and histogram plots, heat maps, tiles, connectors, and text. Bitmap or vector images can be created from GFF-style data inputs and hierarchical configuration files, which can be easily generated by automated tools, making Circos suitable for rapid deployment in data analysis and reporting pipelines.[Supplemental material is available online at http://www.genome.org. Circos is licensed under GPL and available at http:// mkweb.bcgsc.ca/circos. An interactive online version of Circos designed to visualize tabular data is available at http:// mkweb.bcgsc.ca/circos/tableviewer.]The continuing advances in speed, quality, and affordability of whole-genome analysis, including genome sequencing, have transitioned the comparative genomics field from the realm of comparing reference sequence assemblies to comparing assemblies of individual genomes. Whereas interspecies analysis leverages information about one species to further the understanding of biological mechanisms in another, comparative methods are now used to discover differences between individuals and the extent to which these differences affect response to the environment, such as susceptibility to disease and responsiveness to therapy.Our growing ability to collect enormous amounts of sequence information to support such studies is arguably outpacing the rate at which we devise new methods to store, process, analyze, and visualize these data. Any new approaches in data modeling and analysis need to be accompanied with corresponding innovations in the visualization of these data. To mitigate the inherent difficulties in detecting, filtering, and classifying patterns within large data sets, we require instructive and clear visualizations that (1) adapt to the density and dynamic range of the data, (2) maintain complexity and detail in the data, and (3) scale well without sacrificing clarity and specificity.
Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). To identify genes with mutations in B-cell NHL we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase. 11.4% of DLBCL and 13.4% of FL cases had somatic mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis thus suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.
An estimated 15% or more of the cancer burden worldwide is attributable to known infectious agents. We screened colorectal carcinoma and matched normal tissue specimens using RNA-seq followed by host sequence subtraction and found marked over-representation of Fusobacterium nucleatum sequences in tumors relative to control specimens. F. nucleatum is an invasive anaerobe that has been linked previously to periodontitis and appendicitis, but not to cancer. Fusobacteria are rare constituents of the fecal microbiota, but have been cultured previously from biopsies of inflamed gut mucosa. We obtained a Fusobacterium isolate from a frozen tumor specimen; this showed highest sequence similarity to a known gut mucosa isolate and was confirmed to be invasive. We verified overabundance of Fusobacterium sequences in tumor versus matched normal control tissue by quantitative PCR analysis from a total of 99 subjects ( p = 2.5 3 10 -6), and we observed a positive association with lymph node metastasis.[Supplemental material is available for this article.] There are variations on the method, but the basic approach involves shotgun sequencing bulk DNA or RNA isolated from disease tissue, computational subtraction of all sequence reads recognized as human, and comparison of the residual reads to databases of known microbial sequences in order to identify microbial species present in the initial specimen. The method is complementary to traditional culture and histolology-based protocols, and new massively parallel sequencing technologies impart high sensitivity. At present the power of the method remains restricted by the content of microbial sequence databases, but with our increasing reach into microbial sequence space, the comprehensiveness of these data resources continues to improve. In oncology, the identification of a novel polyomavirus in Merkel Cell carcinoma (Feng et al. 2008) is a recent demonstration of the utility of a metagenomics approach.Colorectal carcinoma (CRC) is the fourth leading cause of cancer deaths, responsible for approximately 610,000 deaths per year worldwide (World Health Organization 2011). It is also one of the first and best genetically characterized cancers, and specific somatic mutations in oncogenes and tumor suppressor genes have been found that are associated with progression from adenomatous lesions (polyps) to invasive carcinoma (Vogelstein et al. 1988). The root cause of CRC is unclear, but inflammation is a well-recognized risk factor (Wu et al. 2009;McLean et al. 2011). Given the link between H. pylori-mediated inflammation and gastric cancer (Marshall and Warren 1984), we asked if inflammatory microorganisms are associated with other gastrointestinal (GI) cancers. We began to address this question by undertaking a metagenomic survey of colorectal carcinoma. ResultsTotal RNA was isolated from frozen sections of 11 matched pairs of colorectal carcinoma and adjacent normal tissue specimens. RNA was purified by host ribosomal sequence depletion, rather than poly(A) selection, in order to re...
Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%1. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 cases using a combination of whole exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per megabase (0.48 non-silent), and remarkably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, an additional 7.1% had focal deletions), MYCN (1.7%, a recurrent p.Pro44Leu alteration), and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1, and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies reliant upon frequently altered oncogenic drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.