Building on previous work quantitative estimates of climate change impacts on global food production have been made for the UK Hadley Centre's HadCM2 greenhouse gas only ensemble experiment and the more recent HadCM3 experiment (Hulme et al., 1999). The consequences for world food prices and the number of people at risk of hunger as defined by the Food and Agriculture Organisation (FAO, 1988) ha ve also been assessed. Climate change is expected to increase yields at high and mid-latitudes, and lead to decreases at lower latitudes. This pattern becomes more pronounced as time progresses. The food system may be expected to accommodate such regional variations at the global level, with production, prices and the risk of hunger being relatively unaffected by the additional stress of climate change. By the 2080s the additional number of people at risk of hunger due to climate change is about 80 million people ( ± 10 millio n depending on which of the four HadCM2 ensemble members is selected). H owever, some regions (particularly the arid and sub-humid tropics) will be adversely affected. A particular example is Africa, which is expected to experience marked reductions in yield, decreases in production, and increases in the risk of hunger as a result of climate change. The continent can expect to have between 55 and 65 millio n extra people at risk of hunger by the 2080s under the HadCM2 climate scenario. Under the HadCM3 climate scenario the effect is even more severe, producing an estimated additional 70 + million people at risk of hunger in Africa. 1;)
This paper reports the results of a series of research projects which have aimed to evaluate the implications of climate change for food production and risk of hunger. There are three sets of results: (a) for IS92a (previously described as a 'business-as-usual' climate scenario); (b) for stabilization scenarios at 550 and 750 ppm and (c) for Special Report on Emissions Scenarios (SRES). The main conclusions are: (i) the region of greatest risk is Africa; (ii) stabilization at 750 ppm avoids some but not most of the risk, while stabilization at 550 ppm avoids most of the risk and (iii) the impact of climate change on risk of hunger is influenced greatly by pathways of development. For example, a SRES B2 development pathway is characterized by much lower levels of risk than A2; and this is largely explained by differing levels of income and technology not by differing amounts of climate forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.