A functionally important region in the promoter of the spinach photosynthesis gene AtpC, which encodes the subunit ␥ of the chloroplast ATP synthase, is located immediately upstream of the CAAT-box. A single nucleotide exchange in this region (AAAATTCAAT 3 AAGATCAAT) uncouples the expression of an AtpC promoter::uidA gene fusion from the regulation by light, cytokinin, and functional plastids and results in a high constitutive expression of the reporter gene. By screening an Arabidopsis thaliana expression library with a double-stranded wild-type oligonucleotide from this promoter region, we have isolated cDNAs from Arabidopsis libraries that code for plant homologs of the CAAT-box binding factor (CBF)-C. Binding occurs only in the presence of nuclear extracts, consistent with reports from metazoa CBFs that the subunits A and B in addition to C are required for the formation of the CBF-DNA complex. At least eight genes with homologies to CBF-C are present in the Arabidopsis genome; one of them exhibits striking similarities to the gene for the human global transcriptional repressor Drap1. In gel mobility shift assays, low binding activity of CBF to the wild-type AtpC promoter sequence was observed with nuclear extracts from tissue with low AtpC expression levels, i.e. extracts from etiolated and photobleached seedlings, whereas high binding activity was detectable with extracts from tissues with high AtpC expression levels, i.e. extracts from light-grown seedlings and etiolated seedlings treated with cytokinin. Binding to the mutant sequence, which directs constitutive high level uidA expression in vivo, is significantly stronger than to the wild-type sequence. The data are consistent with the idea that the assembly of CBF at the AtpC promoter is regulated in response to light and cytokinin and that the low level of expression in etiolated and photobleached material is caused by an inhibitory effect. The structure/ function relationships of the Arabidopsis CBFs are discussed in relation to their regulatory function in AtpC gene expression.
Dilated cardiomyopathy (DCM) is a myocardial disease characterized by progressive depression of myocardial contractile function and ventricular dilatation. Thirty percent of DCM patients belong to the inherited genetic form; the rest may be idiopathic, viral, autoimmune, or immune-mediated associated with a viral infection. Disturbances in humoral and cellular immunity have been described in cases of myocarditis and DCM. A number of autoantibodies against cardiac cell proteins have been identified in DCM. In this study, we have profiled the autoantibody repertoire of plasma from DCM patients against a human protein array consisting of 37 200 redundant, recombinant human proteins and performed qualitative and quantitative validation of these putative autoantigens on protein microarrays to identify novel putative DCM specific autoantigens. In addition to analyzing the whole IgG autoantibody repertoire, we have also analyzed the IgG3 antibody repertoire in the plasma samples to study the characteristics of IgG3 subclass antibodies. By combining screening of a protein expression library with protein microarray technology, we have detected 26 proteins identified by the IgG antibody repertoire and 6 proteins bound by the IgG3 subclass. Several of these autoantibodies found in plasma of DCM patients, such as the autoantibody against the Kv channel-interacting protein, are associated with heart failure.
In patients with dilated cardiomyopathy (DCM), cardiac autoantibodies are able to bind with their Fab fragment to epitopes on cardiomyocytes, but thereafter they crosslink through their Fc fragment to cardiac Fc(gamma)-receptor IIa. Polymorphic variability of the Fc(gamma)-receptor IIa is associated with modified affinity of immunoglobin G (IgG) binding and may influence therapeutic effects. In this study, 103 consecutive DCM patients were treated with immunoadsorption (IA) therapy with subsequent IgG substitution (IA/IgG). Echocardiography was performed at baseline and again at 3 and 6 months after IA/IgG. Fc(gamma)-receptor IIa polymorphism R/H131 was genotyped using a nested sequence-specific primer polymerase chain reaction (PCR). Patients with the Fc(gamma)-receptor IIa genotype R/R131 showed significantly greater improvement in left ventricular (LV) function than patients with the R/H131 or H/H131 genotypes did. Irrespective of the Fc(gamma)-receptor polymorphism, patients with shorter disease duration and a more impaired LV function responded with a greater increase in LV ejection fraction (LVEF). Therefore, the Fc(gamma)-receptor polymorphism influences the efficacy of immunomodulatory therapy involving IA/IgG.
IA/IgG therapy induces long-term reduction of negative inotropic antibodies. After 12 months, however, re-increase of negative inotropic antibodies cannot be excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.