Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I–IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.
PCR amplification of the highly conserved baculovirus genes late expression factor 8 (lef-8), late expression factor 9 (lef-9) and polyhedrin/granulin (polh/gran) combined with molecular phylogenetic analyses provide a powerful tool to identify lepidopteran-specific baculoviruses and to study their diversity. In the present investigation, we have improved the degenerate oligonucleotides and corroborated the approach that was recently described by Lange et al. (Lange, M., Wang, H., Zhihong, H., Jehle, J.A., 2004. Towards a molecular identification and classification system of lepidopteran-specific baculoviruses. Virology 325, 36-47.). Baculovirus DNA was isolated from 71 uncharacterized historic baculovirus samples, and partial gene sequences were amplified by using gene-specific degenerate PCR primers. The obtained PCR products were directly sequenced, and the deduced amino acid sequences were compiled and aligned with published sequences of these target genes. A phylogenetic tree of 117 baculoviruses was inferred using maximum parsimony and distance methods. Based on the comprehensive phylogenetic analysis of the partial lef-8, lef-9 and polh/gran genes, we propose a phylogenetic species criterion for lepidopteran-specific baculoviruses that uses the genetic distances of these genes for species demarcation.
Polycomb-group proteins are transcriptional repressors with essential roles in embryonic development. Polycomb repressive complex 2 (PRC2) contains the methyltransferase activity for Lys27. However, the role of other histone modifications in regulating PRC2 activity is just beginning to be understood. Here we show that direct recognition of methylated histone H3 Lys36 (H3K36me), a mark associated with activation, by the PRC2 subunit Phf19 is required for the full enzymatic activity of the PRC2 complex. Using NMR spectroscopy, we provide structural evidence for this interaction. Furthermore, we show that Phf19 binds to a subset of PRC2 targets in mouse embryonic stem cells and that this is required for their repression and for H3K27me3 deposition. These findings show that the interaction of Phf19 with H3K36me2 and H3K36me3 is essential for PRC2 complex activity and for proper regulation of gene repression in embryonic stem cells.
Chromatin remodeling and histone modifications facilitate access of transcription factors to DNA by promoting the unwinding and destabilization of histone-DNA interactions. We present DPF3, a new epigenetic key factor for heart and muscle development characterized by a double PHD finger. DPF3 is associated with the BAF chromatin remodeling complex and binds methylated and acetylated lysine residues of histone 3 and 4. Thus, DPF3 may represent the first plant homeodomains that bind acetylated lysines, a feature previously only shown for the bromodomain. During development Dpf3 is expressed in the heart and somites of mouse, chicken, and zebrafish. Morpholino knockdown of dpf3 in zebrafish leads to incomplete cardiac looping and severely reduced ventricular contractility, with disassembled muscular fibers caused by transcriptional deregulation of structural and regulatory proteins. Promoter analysis identified Dpf3 as a novel downstream target of Mef2a. Taken together, DPF3 adds a further layer of complexity to the BAF complex by representing a tissue-specific anchor between histone acetylations as well as methylations and chromatin remodeling. Furthermore, this shows that plant homeodomain proteins play a yet unexplored role in recruiting chromatin remodeling complexes to acetylated histones.[Keywords: Heart and skeletal muscle development and function; PHD finger; BAF chromatin remodeling complex; SMARCD3-BAF60; acetylated and methylated histones; Mef2] Supplemental material is available at http://www.genesdev.org.
The transcriptome, as the pool of all transcribed elements in a given cell, is regulated by the interaction between different molecular levels, involving epigenetic, transcriptional, and post-transcriptional mechanisms. However, many previous studies investigated each of these levels individually, and little is known about their interdependency. We present a systems biology study integrating mRNA profiles with DNA–binding events of key cardiac transcription factors (Gata4, Mef2a, Nkx2.5, and Srf), activating histone modifications (H3ac, H4ac, H3K4me2, and H3K4me3), and microRNA profiles obtained in wild-type and RNAi–mediated knockdown. Finally, we confirmed conclusions primarily obtained in cardiomyocyte cell culture in a time-course of cardiac maturation in mouse around birth. We provide insights into the combinatorial regulation by cardiac transcription factors and show that they can partially compensate each other's function. Genes regulated by multiple transcription factors are less likely differentially expressed in RNAi knockdown of one respective factor. In addition to the analysis of the individual transcription factors, we found that histone 3 acetylation correlates with Srf- and Gata4-dependent gene expression and is complementarily reduced in cardiac Srf knockdown. Further, we found that altered microRNA expression in Srf knockdown potentially explains up to 45% of indirect mRNA targets. Considering all three levels of regulation, we present an Srf-centered transcription network providing on a single-gene level insights into the regulatory circuits establishing respective mRNA profiles. In summary, we show the combinatorial contribution of four DNA–binding transcription factors in regulating the cardiac transcriptome and provide evidence that histone modifications and microRNAs modulate their functional consequence. This opens a new perspective to understand heart development and the complexity cardiovascular disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.