Micro-Raman spectroscopy provides laterally resolved microstructural information for a broad range of materials. In this Letter, we apply this technique to tri-iodide (CH3NH3PbI3), tribromide (CH3NH3PbBr3), and mixed iodide-bromide (CH3NH3PbI3-xBrx) organic-inorganic halide perovskite thin films and discuss necessary conditions to obtain reliable data. We explain how to measure Raman spectra of pristine CH3NH3PbI3 layers and discuss the distinct Raman bands that develop during moisture-induced degradation. We also prove unambiguously that the final degradation products contain pure PbI2. Moreover, we describe CH3NH3PbI3-xBrx Raman spectra and discuss how the perovskite crystallographic symmetries affect the Raman band intensities and spectral shapes. On the basis of the dependence of the Raman shift on the iodide-to-bromide ratio, we show that Raman spectroscopy is a fast and nondestructive method for the evaluation of the relative iodide-to-bromide ratio.
Advanced characterization methods avoiding transient effects in combination with solar cell performance monitoring reveal details of reversible light-induced perovskite degradation under vacuum. A clear signature of related deep defects in at least the 1 ppm range is observed by low absorptance photocurrent spectroscopy. An efficiency drop, together with deep defects, appears after minutes-long blue illumination and disappears after 1 h or more in the dark. Systematic comparison of perovskite materials prepared by different methods indicates that this behavior is caused by the lead halide residual phase inherently present in material prepared by the two-step method. X-ray photoelectron spectroscopy confirms that lead halide when illuminated decomposes into metallic lead and mobile iodine, which diffuses into the perovskite phase, likely producing interstitial defects. Single-step preparation, as well as preventing lead halide illumination, eliminates this effect.
The preparation and characterization of micrometer gold and silver single-crystals of well-defined shapes are reported here. The shapes of the crystals can be described as plates, polyhedra, and wires. The orientation of the crystal faces was studied using electron and X-ray powder diffraction techniques, and a (111) orientation of the large faces of gold plates was experimentally shown. The surface morphology of the crystal faces was studied by atomic force microscopy. Modifications of gold microplates with the thiolated carborane clusters 1,2-(HS)2-1,2-C2B10H10 (1), 9,12-(HS)2-1,2-C2B10H10 (2), and 1,12-(HS)2-1,12-C2B10H10 (3) are described. The carboranethiol molecules 1 and 2 show dipole moments of 4.1 and 5.9 D. In comparison, the thiolate derivative of compound 1 has a dipole moment of 4.7 D in the opposite direction to 1, and the thiolate form of compound 2 has a dipole moment of 16.7 D in the same direction. On the basis of X-ray photoelectron spectroscopy (XPS) analyses and values of work functions, we revealed that the molecules of 1 and 2 attached to the gold surface have similar electron distribution and dipole moments as within the free thiol derivatives. Following the modification of microplate gold crystals with 3, a monolayer of gold nanoparticles was attached on top of the carborane moieties. The composition of the surface species was studied using XPS. Dynamic contact angles of water on the modified gold surfaces are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.