The preservation of plant species under ex situ conditions in seed banks strongly depends on seed longevity. However, detailed knowledge on this seed ecological aspect is limited and comparative studies from central European habitats are scarce. Therefore, we investigated the seed longevity of 39 calcareous grassland species in order to assess the prospects of ex situ storage of seeds originating from a single, strongly threatened habitat. Seed longevity (p50) was determined by artificially ageing the seeds under rapid ageing conditions (45 °C and 60 % eRH (equilibrium relative humidity)), testing for germination and calculating survival curves. We consulted seed and germination traits that are expected to be related to seed longevity. P50 values strongly varied within calcareous grassland species. The p50 values ranged between 3.4 and 282.2 days. We discovered significantly positive effects of physical dormancy and endosperm absence on p50. Physiological dormancy was associated to comparatively short longevity. These relationships remained significant when accounting for phylogenetic effects. Seed mass, seed shape, and seed coat thickness were not associated with longevity. We therefore recommend more frequent viability assessments of stored endospermic, non-physically and physiologically dormant seeds.
Calcareous grasslands belong to the most diverse, endangered habitats in Europe, but there is still insufficient information about the origin of the plant species related to these grasslands. In order to illuminate this question, we chose for our study the representative grassland species Hippocrepis comosa (Horseshoe vetch). Based on species distribution modeling and molecular markers, we identified the glacial refugia and the postglacial migration routes of the species to Central Europe. We clearly demonstrate that H. comosa followed a latitudinal and due to its oceanity also a longitudinal gradient during the last glacial maximum (LGM), restricting the species to southern refugia situated on the Peninsulas of Iberia, the Balkans, and Italy during the last glaciation. However, we also found evidence for cryptic northern refugia in the UK, the Alps, and Central Germany. Both species distribution modeling and molecular markers underline that refugia of temperate, oceanic species such as H. comosa must not be exclusively located in southern but also in western of parts of Europe. The analysis showed a distinct separation of the southern refugia into a western cluster embracing Iberia and an eastern group including the Balkans and Italy, which determined the postglacial recolonization of Central Europe. At the end of the LGM, H. comosa seems to have expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, and Germany.
Calcareous grasslands belong to the most species-rich and endangered habitats in Europe. However, little is known about the origin of the species typically occurring in these grasslands. In this study we analysed the glacial and post-glacial history of Sanguisorba minor, a typical plant species frequently occurring in calcareous grasslands. The study comprised 38 populations throughout the whole distribution range of the species across Europe. We used molecular markers (AFLP) and applied Bayesian cluster analysis as well as spatial principal components analysis (sPCA) to identify glacial refugia and post-glacial migration routes to Central Europe. Our study revealed significant differences in the level of genetic variation and the occurrence of rare fragments within populations of S. minor and a distinct separation of eastern and western lineages. The analyses uncovered traditional southern but also cryptic northern refugia and point towards a broad fronted post-glacial recolonisation. Based on these results we postulate that incomplete lineage sorting may have contributed to the detected pattern of genetic variation and that S. minor recolonised Central Europe post-glacially from Iberia and northern glacial refugia in France, Belgium or Germany. Our results highlight the importance of refugial areas for the conservation of intraspecific variation in calcareous grassland species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.