Background: The pace of diffusion of BIM (Building Information Modelling) use is considered to increase with governmental initiatives in which public clients in countries like Finland, Singapore, United Kingdom, and Sweden begin requiring BIM as a part of the project delivery. Currently, larger contractor firms use BIM to a certain extent. However, BIM use by mid-sized contractor firms (that is, firms with 50-500 employees that can successfully compete with larger contractors on projects costing a maximum of 50 million Euros) is relatively unknown. Hence, the aim of the paper is to explore current use and perceived constraints and driving forces of BIM-implementation with respect to mid-sized contractors. Methods: A mixed method approach was applied, and data was collected through an interview study and a survey involving chief executive officers or their closest sub-ordinates in mid-sized contractor firms in Sweden. The survey was based on a technology-, organization-, and environment framework that is used in information systems research to study the use of interorganizational information systems. The total population of firms in the survey corresponded to 104. The study presented the preliminary results based on 32 answers (with a 31% response rate). Results: Fifty-eight percent of the surveyed respondents stated that they had been involved in a project in which BIM was used in some manner. The most commonly used application included visualization, which also facilitates coordination and communication. The biggest perceived constraints involved partners that did not use BIM, lack of demand from clients, and the absence of internal demand in the company. With respect to the two last obstacles, significant differences existed between users and non-users. The most common perceived driving forces included the fact that BIM is perceived as a means to follow technical development and that BIM provides competitive advantages to the company. Conclusions: It is concluded that the main driver responsible for BIM-implementation is mainly determined by an individual's subjective positive or negative evaluation of BIM, instead of external pressure from clients and partners or by the internal capacity and knowledge to use BIM.
Purpose The purpose of this research is to support the customization ability for industrial house building companies striving to offer individualized products but with a strategy which includes a production facility. This is accomplished by analyzing the as-is state in terms of existing engineering assets and by proposing a to-be state using the design platform and product lifecycle management (PLM) support. Design/methodology/approach This study is based on design research methodology and collected data are in-depth interviews, document reviews and workshops and method development. The theoretical baseline is product platforms and the design platform. Findings The analysis showed that despite use of a platform, inherent assets are disorganized. Still, the identified object-based engineering assets were possible to include in a conceptual proposal for better management, both in the process and product view, using an asset relationship matrix and a PLM system. Practical implications The results should be applicable for industrial house building and off-site construction companies and offers an approach to identify and manage their assets and platforms which are crucial to stay competitive. Originality/value Previous research on design platforms has focused on engineer-to-order companies within the mechanical industry. The contribution of this paper lies in the application and support of the design platform for industrial house building and the introduction of PLM system support.
Industrialized house-building companies are offering unique products by adopting an engineer-to-order (ETO) strategy. Client satisfaction is achieved by adaptation of product solutions and swift introduction of new technology in combination with cost-efficient production and short lead-time for completion. Product development is executed in collaboration with the clients and changes in requirements are frequent. The use of product platforms, where external and internal efficiency are well-balanced, has been acknowledged as a strategic enabler for mass customization and increased competitiveness. However, ETO-companies struggle with adopting the common product platform approach, set by pre-defined modules and components. Predefinitions may cause an imbalance between product development and a lean production system. The aim of this work was to analyse current strategies and support to master the balance of external and internal efficiency in product development within industrialized housebuilding to facilitate the development of a product platform strategy. Data were gathered from a single case study and an on-going product platform development and includes interviews and document analysis. The findings show that product development is guided by a technical platform, but there is an imbalance where external efficiency is prioritized over the internal efficiency.
Access to the published version may require subscription. N.B. When citing this work, cite the original published paper.
Changing customer requirements, regulations, technology and regulations, shift to automated assembly and product variety are common challenges faced by many manufacturing industries and alignment between product and production system is critical for business success. Design engineers should be aware of production constraints and capabilities to ensure efficient manufacture and assembly of products that are developed. This requires different and detailed support to guide the work, evaluate different design solutions, enable continuous and concurrent work with design for producibility and production preparation. A study was conducted in three companies to understand alignment and integration of product development and production preparation processes. Also, utilization of production requirements, design for manufacture and assembly (DFMA) and failure modes and effect analysis (FMEA) to support design for producibility (DFP) was studied. Currently, production preparation is done through discussions between design and production engineers. Production preparation and work with DFMA and FMEA is skill and experience dependent. Definition, structuring and sharing of production requirements on different system levels, from production and product perspectives are identified as critical to supporting design for producibility and production preparation. The work with FMEA and DFMA can be developed and improved with systematic and structured way of working with production requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.