Improving DNA vaccination remains a fundamental goal in vaccine research. Theoretically, this could be achieved by molecules encoded by DNA capable of activating TLRs to mimic inflammatory responses generated by infection. Therefore, we constructed an expression vector that allows mammalian cells to express the TLR5 agonist flagellin (FliC) at the cell surface. In vitro, cell lines expressing FliC stimulated production of proinflammatory cytokines and the up-regulation of costimulatory molecules on monocytes. Mice given the FliC expression vector intradermally exhibited site-specific inflammation and, in combination with vectors expressing Ags, developed dramatic increases in Ag-specific IgG as well as IgA. Surprisingly, mice also developed strong Ag-specific MHC class I-restricted cellular immunity. To determine whether vaccination using FliC vectors could elicit protective immunity to an infectious agent, mice were given dermal injections of FliC expression vector together with a vector encoding the influenza A virus nucleoprotein. This vaccination strategy elicited protective immunity to lethal influenza A virus infection. These results demonstrate that expression of DNA-encoded TLR agonists by mammalian cells greatly enhance and broaden immune responses, imposing new possibilities on DNA vaccination to infectious agents and cancer.
Reduced sensitivity to insulin in adipose, muscle, and liver tissues is a hallmark of type 2 diabetes. Animal models and patients with type 2 diabetes exhibit elevated levels of circulating retinol-binding protein (RBP4), and RBP4 can induce insulin resistance in mice. However, little is known about how RBP4 affects insulin signaling. We examined the mechanisms of action of RBP4 in primary human adipocytes. RBP4-treated adipocytes exhibited the same molecular defects in insulin signaling, via IRS1 to MAP kinase, as in adipocytes from patients with type 2 diabetes. Without affecting autophosphorylation of the insulin receptor, RBP4 blocked the insulin-stimulated phosphorylation of IRS1 at serine (307) [corresponding to serine (302) in the murine sequence] and concomitantly increased the EC50 (from 0.5 to 2 nM) for insulin stimulation of IRS1 phosphorylation at tyrosine. The phosphorylation of IRS1 at serine (312) [corresponding to serine (307) in the murine sequence] was not affected in cells from diabetic patients and was also not affected by RBP4. The EC50 for insulin stimulation of downstream phosphorylation of MAP kinase ERK1/2 was increased (from 0.2 to 0.8 nM) by RBP4. We show that ERK1/2 phosphorylation is similarly impaired in adipocytes from patients with type 2 diabetes. However, the sensitivity to insulin for downstream signaling to control of protein kinase B and glucose uptake was not affected by RBP4. When insulin-resistant adipocytes from patients with type 2 diabetes were incubated with antibodies against RBP4, insulin-induced phosphorylation of IRS1 at serine (307) was normalized and the EC50 for insulin stimulation of ERK1/2 phosphorylation was reduced. Endogenous levels of RBP4 were markedly reduced in adipocytes from obese or type 2 diabetic subjects, whereas expression levels of RBP4 mRNA were unaffected. These findings indicate that RBP4 may be released from diabetic adipocytes and act locally to inhibit phosphorylation of IRS1 at serine (307), a phosphorylation site that may integrate nutrient sensing with insulin signaling.
Mutations in the gene encoding 11-cis-retinol dehydrogenase (RDH5; EC 1.1.1.105) are associated with fundus albipunctatus, an autosomal recessive eye disease characterized by stationary night blindness and accumulation of white spots in the retina. In addition, some mutated alleles are associated with development of cone dystrophy, especially in elderly patients. The numbers of identified RDH5 mutations linked to fundus albipunctatus have increased considerably during recent years. In this work, we have characterized the biochemical and cell biological properties of 11 mutants of RDH5 to understand the molecular pathology of the disease. All RDH5 mutants showed decreased protein stability and subcellular mislocalization and, in most cases, loss of enzymatic activity in vitro and in vivo. Surprisingly, mutant A294P displays significant enzymatic activity. Cross-linking studies and molecular modeling showed that RDH5 is dimeric, and co-expression analyses of wild-type and mutated alleles showed that the mutated enzymes, in a transdominant-negative manner, influenced the in vivo enzymatic properties of functional variants of the enzyme, particularly the A294P mutant. Thus, under certain conditions, nonfunctional alleles act in a dominantnegative way on functional but relatively unstable mutated alleles. However, in heterozygous individuals carrying one wild-type allele, the disease is recessive, probably due to the stability of the wild-type enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.