Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
A fast and memory-efficient calculation of theoretical isotope patterns is crucial for the routine interpretation of mass spectrometric data. For high-resolution experiments, calculations must procure the exact masses and probabilities of relevant isotopologues over a wide range of polyisotopic compounds, while pruning low-probable ones. Here, a novel albeit simple treelike structure is introduced to swiftly derive sets of relevant subisotopologues for each element in a molecule, which are then combined to the isotopologues of the full molecule. In contrast to existing approaches, transitions via single replacements of the most abundant isotope per element are used in separable tree branches to derive subisotopologues from each other. Moreover, the underlying transition trees prevent redundant replacements and permit the detection of the most probable isotopologue in a first phase. A relative threshold can then be exploited in a second parallelized phase for a precise prepruning of large fractions of the remaining subisotopologues. The gain in performance from such early pruning and the lower variation in the distortion of simulated data with use of relative rather than absolute thresholds were validated in a large-scale benchmark simulation, unprecedentedly comprising several thousand molecular formulas. Both the algorithm and a wealth of related features are freely available as R-package enviPat and as a user-friendly Web interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.