A. The intrinsic volumes are measures of the content of a convex body. This paper applies probabilistic and information-theoretic methods to study the sequence of intrinsic volumes. The main result states that the intrinsic volume sequence concentrates sharply around a specific index, called the central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an appropriately scaled cube has the intrinsic volume sequence with maximum entropy.
We show that recent results on randomized dimension reduction schemes that exploit structural properties of data can be applied in the context of persistent homology. In the spirit of compressed sensing, the dimension reduction is determined by the Gaussian width of a structure associated to the data set, rather than its size, and such a reduction can be computed efficiently. We further relate the Gaussian width to the doubling dimension of a finite metric space, which appears in the study of the complexity of other methods for approximating persistent homology. This allows to literally replace the ambient dimension by an intrinsic notion of dimension related to the structure of the data.
Given a set P of n points and a constant k, we are interested in computing the persistent homology of the Čech filtration of P for the k-distance, and investigate the effectiveness of dimensionality reduction for this problem, answering an open question of Sheehy (The persistent homology of distance functions under random projection. In Cheng, Devillers (eds), 30th Annual Symposium on Computational Geometry, SOCG’14, Kyoto, Japan, June 08–11, p 328, ACM, 2014). We show that any linear transformation that preserves pairwise distances up to a $$(1\pm {\varepsilon })$$ ( 1 ± ε ) multiplicative factor, must preserve the persistent homology of the Čech filtration up to a factor of $$(1-{\varepsilon })^{-1}$$ ( 1 - ε ) - 1 . Our results also show that the Vietoris-Rips and Delaunay filtrations for the k-distance, as well as the Čech filtration for the approximate k-distance of Buchet et al. [J Comput Geom, 58:70–96, 2016] are preserved up to a $$(1\pm {\varepsilon })$$ ( 1 ± ε ) factor. We also prove extensions of our main theorem, for point sets (i) lying in a region of bounded Gaussian width or (ii) on a low-dimensional submanifold, obtaining embeddings having the dimension bounds of Lotz (Proc R Soc A Math Phys Eng Sci, 475(2230):20190081, 2019) and Clarkson (Tighter bounds for random projections of manifolds. In Teillaud (ed) Proceedings of the 24th ACM Symposium on Computational Geom- etry, College Park, MD, USA, June 9–11, pp 39–48, ACM, 2008) respectively. Our results also work in the terminal dimensionality reduction setting, where the distance of any point in the original ambient space, to any point in P, needs to be approximately preserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.