SSc is a rare CTD that affects multiple organ systems, resulting in substantial morbidity and mortality. Evidence of interstitial lung disease (ILD) is seen in ∼80% of patients with SSc. Currently there is no approved disease-modifying treatment for ILD and few effective treatment options are available. CYC is included in treatment guidelines, but it has limited efficacy and is associated with toxicity. MMF is becoming the most commonly used medication in clinical practice in North America and the UK, but its use is not universal. Newer agents targeting the pathogenic mechanisms underlying SSc-ILD, including fibrotic and inflammatory pathways, lymphocytes, cell-cell and cell-extracellular membrane interactions, hold promise for better treatment outcomes, including improved lung function, patient-related outcomes and quality of life. Here we review ongoing trials of established and novel agents that are currently recruiting patients with SSc-ILD.
Background: Interleukin 17 is involved in the pathogenesis of psoriasis, a chronic debilitating disease.Objectives: To evaluate the safety/tolerability, immunogenicity, pharmacokinetics/pharmacodynamics, and efficacy of M1095, an antieinterleukin 17A/F nanobody, in moderate-to-severe plaque psoriasis.Methods: This multicenter, double-blind, placebo-controlled dose escalation phase 1 study randomized 44 patients 4:1 to treatment with subcutaneous M1095 (30, 60, 120, or 240 mg) or placebo biweekly for 6 weeks, in 4 ascending dose cohorts.
Results:The most frequent treatment-emergent adverse events with M1095 were pruritus (n = 4) and headache (n = 3); 2 patients withdrew owing to adverse events (injection site reaction and elevated liver enzyme levels). The terminal half-life of M1095 was 11 to 12 days. The area under the curve/maximum concentration was dose proportional. Of 10 M1095-treated patients positive for antidrug antibodies, 5 showed treatment-emergent antidrug antibody responses. There was no effect on M1095 exposure. Marked decreases in psoriasis inflammatory markers were observed with M1095. By day 85, 100% and 56% of patients receiving M1095, 240 mg, achieved psoriasis area and severity index 90 and 100, respectively. Improvements in static Physician's Global Assessment and affected body surface area were also seen.Limitations: Interpretation of efficacy data is limited by the small sample size.
Conclusion:Multiple subcutaneous doses of M1095 showed a favorable safety profile with dosedependent improvements in psoriasis. (
TAK-653 is a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-positive allosteric modulator being developed as a potential therapeutic for major depressive disorder (MDD). Currently, there are no translational biomarkers that evaluate physiological responses to the activation of glutamatergic brain circuits available. Here, we tested whether noninvasive neurostimulation, specifically single-pulse or paired-pulse motor cortex transcranial magnetic stimulation (spTMS and ppTMS, respectively), coupled with measures of evoked motor response captures the pharmacodynamic effects of TAK-653 in rats and healthy humans. In the rat study, five escalating TAK-653 doses (0.1–50 mg/kg) or vehicle were administered to 31 adult male rats, while measures of cortical excitability were obtained by spTMS coupled with mechanomyography. Twenty additional rats were used to measure brain and plasma TAK-653 concentrations. The human study was conducted in 24 healthy volunteers (23 males, 1 female) to assess the impact on cortical excitability of 0.5 and 6 mg TAK-653 compared with placebo, measured by spTMS and ppTMS coupled with electromyography in a double-blind crossover design. Plasma TAK-653 levels were also measured. TAK-653 increased both the mechanomyographic response to spTMS in rats and the amplitude of motor-evoked potentials in humans at doses yielding similar plasma concentrations. TAK-653 did not affect resting motor threshold or paired-pulse responses in humans. This is the first report of a translational functional biomarker for AMPA receptor potentiation and indicates that TMS may be a useful translational platform to assess the pharmacodynamic profile of glutamate receptor modulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.