Vaccine strategies aimed at blocking virus entry have so far failed to induce protection against heterologous viruses. Thus, the control of viral infection and the block of disease onset may represent a more achievable goal of human immunodeficiency virus (HIV) vaccine strategies. Here we show that vaccination of cynomolgus monkeys with a biologically active HIV-1 Tat protein is safe, elicits a broad (humoral and cellular) specific immune response and reduces infection with the highly pathogenic simian-human immunodeficiency virus (SHIV)-89.6P to undetectable levels, preventing the CD4+ T-cell decrease. These results may provide new opportunities for the development of a vaccine against AIDS.
The ability of a live attenuated simian immunodeficiency virus (SIV) to protect against challenge with cloned SIVmac251/BK28 was evaluated in four cynomolgus macaques. The intravenous infection of the C8 variant of the SIVmac251/32H virus, carrying an in-frame 12 bp deletion in the nef gene, did not affect the CD4 M and CD8 M cell counts, and a persistent infection associated with an extremely low virus burden in peripheral blood mononuclear cells (PBMCs) was established. After 40 weeks, these monkeys were challenged intravenously with a 50 MID 50 dose of SIVmac251/BK28 virus grown on macaque cells. Four naive monkeys were infected as controls. Monkeys were monitored for 62 weeks following challenge. Attempts to rescue virus from either PBMCs or bone marrow from the C8-vaccinated monkeys were unsuccessful, but in two cases virus was re-isolated from lymph node cells. The
The infection of cynomolgus monkeys with an attenuated simian immunodeficiency virus (SIV) (C8) carrying a deletion in the nef gene results in a persistent infection associated with an extremely low viral burden in peripheral blood mononuclear cells. The aim of this study was to determine (1) the breadth of the protection after repeated challenges of monkeys with SIV homologous strains of different pathogenicity, (2) the genotypic stability of the live virus vaccine, (3) whether the protection might depend on cellular resistance to superinfection, and (4) whether immunogenic stimuli such as recall antigens could reactivate the replication of the C8 virus. To address these goals, the monkeys were challenged at 40 weeks after C8 infection with 50 MID50 of cloned SIVmac251, BK28 grown on macaque cells. They were protected as indicated by several criteria, including virus isolation, anamnestic serological responses, and viral diagnostic PCR. At 92 weeks after the first challenge, unfractionated peripheral blood mononuclear cells from protected monkeys were susceptible to the in vitro infection with SIVmac32H, spl. At 143 weeks after C8 infection, the four protected monkeys were rechallenged with 50 MID50 of the pathogenic SIVmac32H, spl grown on macaque cells. Once again, they were protected. The C8 virus remained genotypically stable, and depletion of CD4(+) cells was not observed during approximately 3 years of follow-up. In contrast, it was found that the infection with SIVmac32H, spl induced CD4(+) cell depletion in three of three control monkeys. Of importance, stimulation with tetanus toxoid, although capable of inducing specific humoral and T cell proliferative responses, failed to induce a detectable reactivation of C8 virus.
An increasing frequency of malignant lymphomas occurs among patients infected by human immunodeficiency virus. Because of the close similarities to human malignancies, we used a nonhuman primate model to study the pathogenesis of simian immunodeficiency virus (SIV)–associated malignancies. Specifically, we investigated (1) the presence of the SIV genome in tumor cells, (2) the presence of coinfecting viruses, and (3) the presence of a rearrangement of the immunoglobulin and c-myc genes. We observed 5 cases of non-Hodgkin's lymphomas (4 of B- and 1 of T-cell origin) among 14 SIV-infected cynomolgus monkeys. No c-myc translocation was observed in the tumors, whereas B-cell lymphomas were characterized either by a monoclonal (in 2 of 4) or by an oligoclonal (in 2 of 4) VDJ rearrangements of the immunoglobulin heavy chain gene. Molecular, biological, and immunological analyses did show the presence of infectious SIV in the tumor cells of 1 T-cell and 2 oligoclonal B-cell lymphomas. Neither Simian T-lymphotropic nor Epstein-Barr viruses were detectable, whereas Simian herpes virus Macaca fascicularis-1 was detectable at a very low copy number in 3 of 4 B-cell lymphomas; however, only 1 of these also harbored the SIV genome. These results support the possibility that SIV may be directly involved in the process of B or T lymphomagenesis occurring in simian acquired immunodeficiency syndrome.
An increasing frequency of malignant lymphomas occurs among patients infected by human immunodeficiency virus. Because of the close similarities to human malignancies, we used a nonhuman primate model to study the pathogenesis of simian immunodeficiency virus (SIV)–associated malignancies. Specifically, we investigated (1) the presence of the SIV genome in tumor cells, (2) the presence of coinfecting viruses, and (3) the presence of a rearrangement of the immunoglobulin and c-myc genes. We observed 5 cases of non-Hodgkin's lymphomas (4 of B- and 1 of T-cell origin) among 14 SIV-infected cynomolgus monkeys. No c-myc translocation was observed in the tumors, whereas B-cell lymphomas were characterized either by a monoclonal (in 2 of 4) or by an oligoclonal (in 2 of 4) VDJ rearrangements of the immunoglobulin heavy chain gene. Molecular, biological, and immunological analyses did show the presence of infectious SIV in the tumor cells of 1 T-cell and 2 oligoclonal B-cell lymphomas. Neither Simian T-lymphotropic nor Epstein-Barr viruses were detectable, whereas Simian herpes virus Macaca fascicularis-1 was detectable at a very low copy number in 3 of 4 B-cell lymphomas; however, only 1 of these also harbored the SIV genome. These results support the possibility that SIV may be directly involved in the process of B or T lymphomagenesis occurring in simian acquired immunodeficiency syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.