One of the problems that hinder emergency in developing countries is the problem of monitoring a number of activities on inter-urban roadway networks. In the literature, the use of control points is proposed in the context of these countries in order to ensure efficient monitoring, by ensuring a good coverage while minimizing the installation costs as well as the number of accidents across these road networks. In this work, we propose an optimal deployment of these control points from several optimization methods based on some evolutionary multi-objective algorithms: the non-dominated sorting genetic algorithm-II (NSGA-II); the multi-objective particle swarm optimization (MOPSO); the strength Pareto evolutionary algorithm -II (SPEA-II); and the Pareto envelope based selection algorithm-II (PESA-II). We performed the tests and compared these deployments using Pareto front and performance indicators like the spread and hypervolume and the inverted generational distance (IGD). The results obtained show that the NSGA-II method is the most adequate in the deployment of these control points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.