Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture1,2. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates3,4, but we show that Atlantic cod has lost the genes for MHCII, CD4 and Ii that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions5. We find a highly expanded number of MHCI genes and a unique composition of its Toll-like receptor (TLR) families. This suggests how the Atlantic cod immune system has evolved compensatory mechanisms within both adaptive and innate immunity in the absence of MHCII. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.
With over 32,000 extant species 1 , teleost fishes comprise the majority of vertebrate species. Their taxonomic diversity is matched by extensive genetic and phenotypic variation, including novel immunological strategies. Although the functionality of the adaptive immune system has been considered to be conserved since its emergence in the ancestor of all jawed vertebrates 2,3 , fundamental modifications of the immune gene repertoire have recently been reported in teleosts [4][5][6][7] . One of the most dramatic changes has occurred in Atlantic cod (Gadus morhua), involving complete loss of the MHC II pathway that is otherwise responsible for the detection of bacterial pathogens in vertebrates 4 . Moreover, this loss is accompanied by a substantially enlarged repertoire of MHC I genes, which normally encode molecules for protection against viral pathogens. It has thus been hypothesized that the expanded MHC I repertoire of cod evolved as a compensatory mechanism, whereby broader MHC I functionality makes up for the initial loss of MHC II (refs. 4,6). However, the questions of how and when MHC II was lost relative to the MHC I expansion, and whether these genomic modifications are causally related, have so far remained unresolved.As key components of the vertebrate adaptive immune system, the complex MHC pathways and their functionality are now well characterized 8-10 , but less is known about the causes of MHC copy number variation, which poses an immunological tradeoff 11,12 . Although an increase in the number of MHC genes facilitates pathogen detection, it will also decrease the number of circulating T cells [13][14][15][16] , resulting in an immune system that can detect a large number of pathogens at the expense of being less efficient in removing them. The evolution of MHC copy numbers is therefore likely driven toward intermediate optima determined by a tradeoff between detection and elimination of pathogens-as suggested by selection for 5-10 copies inferred in case studies of fish 17,18 and birds 19 . Because pathogen load and the associated selective pressures vary between habitats, the optimal number of MHC copies depends on the environment [20][21][22] . As a result, interbreeding between different locally adapted populations is expected to produce hybrids with excess (above optimal) MHC diversity that are characterized by T cell deprivation and low fitness. This process would introduce postzygotic reproductive isolation and promote reinforcement of premating isolation between the populations. Consequently, MHC genes have been suggested to have an important role in speciation 22,23 , but, to our knowledge, this role has never been tested comparatively in a macroevolutionary context.Here we report comparative analyses of 76 teleost species, of which 66 were sequenced to produce partial draft genome assemblies, including 27 representatives of cod-like fishes within the order Gadiformes. First, we use phylogenomic analysis to resolve standing controversy regarding early-teleost divergences and to firmly ...
Single-gene and whole-genome duplications are important evolutionary mechanisms that contribute to biological diversification by launching new genetic raw material. For example, the evolution of animal vision is tightly linked to the expansion of the opsin gene family encoding light-absorbing visual pigments. In teleost fishes, the most species-rich vertebrate group, opsins are particularly diverse and key to the successful colonization of habitats ranging from the bioluminescence-biased but basically dark deep sea to clear mountain streams. In this study, we report a previously unnoticed duplication of the violet-blue short wavelength-sensitive 2 (SWS2) opsin, which coincides with the radiation of highly diverse percomorph fishes, permitting us to reinterpret the evolution of this gene family. The inspection of close to 100 fish genomes revealed that, triggered by frequent gene conversion between duplicates, the evolutionary history of SWS2 is rather complex and difficult to predict. Coincidentally, we also report potential cases of gene resurrection in vertebrate opsins, whereby pseudogenized genes were found to convert with their functional paralogs. We then identify multiple novel amino acid substitutions that are likely to have contributed to the adaptive differentiation between SWS2 copies. Finally, using the dusky dottyback Pseudochromis fuscus, we show that the newly discovered SWS2A duplicates can contribute to visual adaptation in two ways: by gaining sensitivities to different wavelengths of light and by being differentially expressed between ontogenetic stages. Thus, our study highlights the importance of comparative approaches in gaining a comprehensive view of the dynamics underlying gene family evolution and ultimately, animal diversification.
Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim-light, vertebrates generally rely upon a single rod opsin (RH1) for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Amongst these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (2 cone, 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blue-shifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.