Advances in computational and data sciences for data management, integration, mining, classification, filtering, visualization along with engineering innovations in medical devices have prompted demands for more comprehensive and coherent strategies to address the most fundamental questions in health care and medicine. Theory, methods, and models from artificial intelligence (AI) are changing the health care landscape in clinical and community settings and have already shown promising results in multiple applications in healthcare including, integrated health information systems, patient education, geocoding health data, social media analytics, epidemic and syndromic surveillance, predictive modeling and decision support, mobile health, and medical imaging (e.g. radiology and retinal image analyses). Health intelligence uses tools and methods from artificial intelligence and data science to provide better insights, reduce waste and wait time, and increase speed, service efficiencies, level of accuracy, and productivity in health care and medicine.
Aim To develop a consensus paper on the central points of an international invitational think‐tank on nursing and artificial intelligence (AI). Methods We established the Nursing and Artificial Intelligence Leadership (NAIL) Collaborative, comprising interdisciplinary experts in AI development, biomedical ethics, AI in primary care, AI legal aspects, philosophy of AI in health, nursing practice, implementation science, leaders in health informatics practice and international health informatics groups, a representative of patients and the public, and the Chair of the ITU/WHO Focus Group on Artificial Intelligence for Health. The NAIL Collaborative convened at a 3‐day invitational think tank in autumn 2019. Activities included a pre‐event survey, expert presentations and working sessions to identify priority areas for action, opportunities and recommendations to address these. In this paper, we summarize the key discussion points and notes from the aforementioned activities. Implications for nursing Nursing's limited current engagement with discourses on AI and health posts a risk that the profession is not part of the conversations that have potentially significant impacts on nursing practice. Conclusion There are numerous gaps and a timely need for the nursing profession to be among the leaders and drivers of conversations around AI in health systems. Impact We outline crucial gaps where focused effort is required for nursing to take a leadership role in shaping AI use in health systems. Three priorities were identified that need to be addressed in the near future: (a) Nurses must understand the relationship between the data they collect and AI technologies they use; (b) Nurses need to be meaningfully involved in all stages of AI: from development to implementation; and (c) There is a substantial untapped and an unexplored potential for nursing to contribute to the development of AI technologies for global health and humanitarian efforts.
We propose a new method to mitigate (identify and address) adverse interactions (drug-drug or drug-disease) that occur when a patient with comorbid diseases is managed according to two concurrently applied clinical practice guidelines (CPGs). A lack of methods to facilitate the concurrent application of CPGs severely limits their use in clinical practice and the development of such methods is one of the grand challenges for clinical decision support. The proposed method responds to this challenge. We introduce and formally define logical models of CPGs and other related concepts, and develop the mitigation algorithm that operates on these concepts. In the algorithm we combine domain knowledge encoded as interaction and revision operators using the constraint logic programming (CLP) paradigm. The operators characterize adverse interactions and describe revisions to logical models required to address these interactions, while CLP allows us to efficiently solve the logical models - a solution represents a feasible therapy that may be safely applied to a patient. The mitigation algorithm accepts two CPGs and available (likely incomplete) patient information. It reports whether mitigation has been successful or not, and on success it gives a feasible therapy and points at identified interactions (if any) together with the revisions that address them. Thus, we consider the mitigation algorithm as an alerting tool to support a physician in the concurrent application of CPGs that can be implemented as a component of a clinical decision support system. We illustrate our method in the context of two clinical scenarios involving a patient with duodenal ulcer who experiences an episode of transient ischemic attack.
In this work we propose a comprehensive framework based on first-order logic (FOL) for mitigating (identifying and addressing) interactions between multiple clinical practice guidelines (CPGs) applied to a multi-morbid patient while also considering patient preferences related to the prescribed treatment. With this framework we respond to two fundamental challenges associated with clinical decision support: (1) concurrent application of multiple CPGs and (2) incorporation of patient preferences into the decision making process. We significantly expand our earlier research by (1) proposing a revised and improved mitigation-oriented representation of CPGs and secondary medical knowledge for addressing adverse interactions and incorporating patient preferences and (2) introducing a new mitigation algorithm. Specifically, actionable graphs representing CPGs allow for parallel and temporal activities (decisions and actions). Revision operators representing secondary medical knowledge support temporal interactions and complex revisions across multiple actionable graphs. The mitigation algorithm uses the actionable graphs, revision operators and available (and possibly incomplete) patient information represented in FOL. It relies on a depth-first search strategy to find a valid sequence of revisions and uses theorem proving and model finding techniques to identify applicable revision operators and to establish a management scenario for a given patient if one exists. The management scenario defines a safe (interaction-free) and preferred set of activities together with possible patient states. We illustrate the use of our framework with a clinical case study describing two patients who suffer from chronic kidney disease, hypertension, and atrial fibrillation, and who are managed according to CPGs for these diseases. While in this paper we are primarily concerned with the methodological aspects of mitigation, we also briefly discuss a high-level proof of concept implementation of the proposed framework in the form of a clinical decision support system (CDSS). The proposed mitigation CDSS "insulates" clinicians from the complexities of the FOL representations and provides semantically meaningful summaries of mitigation results. Ultimately we plan to implement the mitigation CDSS within our MET (Mobile Emergency Triage) decision support environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.