Despite the wide variety of adaptive modifications in the oral and facial regions of vertebrates, their early oropharyngeal development is considered strictly uniform. It involves sequential formation of the mouth and pharyngeal pouches, with ectoderm outlining the outer surface and endoderm the inner surface, as a rule. At the extreme anterior domain of vertebrate embryos, the ectoderm and endoderm directly juxtapose and initial development of this earliest ecto-endoderm interface, the primary mouth, typically involves ectodermal stomodeal invagination that limits the anterior expansion of the foregut endoderm. Here we present evidence that in embryos of extant non-teleost fishes, oral (stomodeal) formation is preceded by the development of prominent pre-oral gut diverticula (POGD) between the forebrain and roof of the forming mouth. Micro-computed tomography (micro-CT) imaging of bichir, sturgeon and gar embryos revealed that foregut outpocketing at the pre-oral domain begins even before the sequential formation of pharyngeal pouches. The presence of foregut-derived cells in the front of the mouth was further confirmed by in vivo experiments that allowed specific tracing of the early endodermal lining. We show that POGD in sturgeons contribute to the orofacial surface of their larvae, comprising oral teeth, lips, and sensory barbels. To our knowledge, this is the first thorough evidence for endodermal origin of external craniofacial structures in any vertebrate. In bichir and gar embryos, POGD form prominent cranial adhesive organs that are characteristic of the ancient bauplan of free-living chordate larvae. POGD hence seem arguably to be ancestral for all ray-finned fishes, and their topology, pharyngeal-like morphogenesis and gene expression suggest that they are evolutionarily related to the foregut-derived diverticula of early chordate and hemichordate embryos. The formation of POGD might thus represent an ancestral developmental module with deep deuterostome origins.
In electroreceptive jawed vertebrates, embryonic lateral line placodes give rise to electrosensory ampullary organs as well as mechanosensory neuromasts. Previous reports of shared gene expression suggest that conserved mechanisms underlie electroreceptor and mechanosensory hair cell development and that electroreceptors evolved as a transcriptionally related 'sister cell type' to hair cells. We previously identified only one transcription factor gene, Neurod4, as ampullary organ-restricted in the developing lateral line system of a chondrostean ray-finned fish, the Mississippi paddlefish (Polyodon spathula). The other 16 transcription factor genes we previously validated in paddlefish were expressed in both ampullary organs and neuromasts. Here, we used our published lateral line organ-enriched gene-set (arising from differential bulk RNA-seq in late-larval paddlefish), together with a candidate gene approach, to identify 23 transcription factor genes expressed in the developing lateral line system of a more experimentally tractable chondrostean, the sterlet (Acipenser ruthenus, a small sturgeon), and/or that of paddlefish. Twelve are expressed in both ampullary organs and neuromasts, consistent with conservation of molecular mechanisms. Six are novel electrosensory-restricted transcription factor genes (Irx5, Satb2, Insm1, Sp5, MafA and Rorc), and five are the first-reported mechanosensory-restricted transcription factor genes (Foxg1, Sox8, Isl1, Hmx2 and Rorb). However, as previously reported, Sox8 is expressed in ampullary organs as well as neuromasts in a shark (Scyliorhinus canicula), suggesting the existence of lineage-specific differences between cartilaginous and ray-finned fishes. Overall, our results support the hypothesis that ampullary organs and neuromasts develop via largely conserved transcriptional mechanisms, and identify multiple transcription factors potentially involved in the formation of electrosensory versus mechanosensory lateral line organs.
In most vertebrates, pharyngeal arches form in a stereotypic anterior-to-posterior progression. To gain insight into the mechanisms underlying evolutionary changes in pharyngeal arch development, here we investigate embryos and larvae of bichirs. Bichirs represent the earliest diverged living group of ray-finned fishes, and possess intriguing traits otherwise typical for lobe-finned fishes such as ventral paired lungs and larval external gills. In bichir embryos, we find that the anteroposterior way of formation of cranial segments is modified by the unique acceleration of the entire hyoid arch segment, with earlier and orchestrated development of the endodermal, mesodermal, and neural crest tissues. This major heterochronic shift in the anteroposterior developmental sequence enables early appearance of the external gills that represent key breathing organs of bichir free-living embryos and early larvae. Bichirs thus stay as unique models for understanding developmental mechanisms facilitating increased breathing capacity.
In electroreceptive jawed fishes and amphibians, individual lateral line placodes form lines of neuromasts on the head containing mechanosensory hair cells, flanked by fields of ampullary organs containing electroreceptors - modified hair cells that respond to weak electric fields. Extensively shared gene expression suggests that conserved molecular mechanisms are involved in their development, but a few transcription factor genes are restricted either to the developing electrosensory or mechanosensory lateral line. Here, we used CRISPR/Cas9-mediated mutagenesis in F0-injected sterlet embryos (Acipenser ruthenus, a sturgeon) to test the function of three such genes. We found that the 'hair cell' transcription factor gene Atoh1 is required for both hair cell and electroreceptor differentiation in sterlet, and for Pou4f3 and Gfi1 expression in both neuromasts and ampullary organs. These data support the conservation of developmental mechanisms between hair cells and electroreceptors. Targeting ampullary organ-restricted Neurod4 did not yield any phenotype, potentially owing to redundancy with other Neurod genes that we found to be expressed in sterlet ampullary organs. After targeting mechanosensory-restricted Foxg1, ampullary organs formed within neuromast lines, suggesting that Foxg1 normally represses their development. We speculate that electrosensory organs may be the 'default' fate of lateral line primordia in electroreceptive vertebrates.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.