GABAergic dysfunction is present in the hippocampus in schizophrenia (SZ) and bipolar disorder (BD). The trisynaptic pathway was ''deconstructed'' into various layers of sectors CA3/2 and CA1 and gene expression profiling performed. Network association analysis was used to uncover genes that may be related to regulation of glutamate decarboxylase 67 (GAD 67), a marker for this system that has been found by many studies to show decreased expression in SZs and BDs. The most striking change was a down-regulation of GAD 67 in the stratum oriens (SO) of CA2/3 in both groups; CA1 only showed changes in the SO of schizophrenics. The network generated for GAD 67 contained 25 genes involved in the regulation of kainate receptors, TGF- and Wnt signaling, as well as transcription factors involved in cell growth and differentiation. In SZs, IL-1, (GRIK2/3), TGF-2, TGF-R1, histone deacetylase 1 (HDAC1), death associated protein (DAXX), and cyclin D2 (CCND2) were all significantly up-regulated, whereas in BDs, PAX5, Runx2, LEF1, TLE1, and CCND2 were significantly down-regulated. In the SO of CA1 of BDs, where GAD67 showed no expression change, TGF- and Wnt signaling genes were all up-regulated, but other transcription factors showed no change in expression. In other layers/sectors, BDs showed no expression changes in these GAD 67 network genes. Overall, these results are consistent with the hypothesis that decreased expression of GAD 67 may be associated with an epigenetic mechanism in SZ. In BD, however, a suppression of transcription factors involved in cell differentiation may contribute to GABA dysfunction.epigenetics ͉ network association analysis ͉ PAX5 ͉ Runx2 ͉ HDAC1
Gasdermin-D (GSDMD) in inflammasome-activated macrophages is cleaved by caspase-1 to generate N-GSDMD fragments. N-GSDMD then oligomerizes in the plasma membrane (PM) to form pores that increase membrane permeability, leading to pyroptosis and IL-1β release. In contrast, we report that although N-GSDMD is required for IL-1β secretion in NLRP3activated human and murine neutrophils, N-GSDMD does not localize to the PM or increase PM permeability or pyroptosis. Instead, biochemical and microscopy studies reveal that N-GSDMD in neutrophils predominantly associates with azurophilic granules and LC3 + autophagosomes. N-GSDMD trafficking to azurophilic granules causes leakage of neutrophil elastase into the cytosol, resulting in secondary cleavage of GSDMD to an alternatively cleaved N-GSDMD product. Genetic analyses using ATG7-deficient cells indicate that neutrophils secrete IL-1β via an autophagy-dependent mechanism. These findings reveal fundamental differences in GSDMD trafficking between neutrophils and macrophages that underlie neutrophil-specific functions during inflammasome activation.
The process of wound healing involves a complex network of signaling pathways working to promote rapid cell migration and wound closure. Activation of purinergic receptors by secreted nucleotides plays a major role in calcium mobilization and the subsequent calcium-dependent signaling that is essential for proper healing. The role of the purinergic receptor P2X7 in wound healing is still relatively unknown. We demonstrate that P2X7 expression increases at the leading edge of corneal epithelium after injury in an organ culture model, and that this change occurs despite an overall decrease in P2X7 expression throughout the epithelium. Inhibition of P2X7 prevents this change in localization after injury and impairs wound healing. In cell culture, P2X7 inhibition attenuates the amplitude and duration of injuryinduced calcium mobilization in cells at the leading edge. Immunofluorescence analysis of scratchwounded cells reveals that P2X7 inhibition results in an overall decrease in the number of focal adhesions along with a concentration of focal adhesions at the wound margin. Live cell imaging of green fluorescent proteinelabeled actin and talin shows that P2X7 inhibition alters actin cytoskeletal rearrangements and focal adhesion dynamics after injury. Together, these data demonstrate that P2X7 plays a critical role in mediating calcium signaling and coordinating cytoskeletal rearrangement at the leading edge, both of which processes are early signaling events necessary for proper epithelial wound healing. (Am J Pathol 2016, 186: 285e296; http://dx
Pulmonary neuroendocrine cells (PNECs) are the only innervated airway epithelial cells. To what extent neural innervation regulates PNEC secretion and function is unknown. Here, we discover that neurotrophin 4 (NT4) plays an essential role in mucus overproduction after early life allergen exposure by orchestrating PNEC innervation and secretion of GABA. We found that PNECs were the only cellular source of GABA in airways. In addition, PNECs expressed NT4 as a target-derived mechanism underlying PNEC innervation during development. Early life allergen exposure elevated the level of NT4 and caused PNEC hyperinnervation and nodose neuron hyperactivity. Associated with aberrant PNEC innervation, the authors discovered that GABA hypersecretion was required for the induction of mucin Muc5ac expression. In contrast, mice were protected from allergen-induced mucus overproduction and changes along the nerve-PNEC axis without any defects in inflammation. Last, GABA installation restored mucus overproduction in mice after early life allergen exposure. Together, our findings provide the first evidence for NT4-dependent neural regulation of PNEC secretion of GABA in a neonatal disease model. Targeting the nerve-PNEC axis may be a valid treatment strategy for mucus overproduction in airway diseases, such as childhood asthma.-Barrios, J., Patel, K. R., Aven, L., Achey, R., Minns, M. S., Lee, Y., Trinkaus-Randall, V. E., Ai, X. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion.
Improper wound repair of the corneal epithelium can alter refraction of light resulting in impaired vision. We have shown that ATP is released after injury, activates purinergic receptor signaling pathways and plays a major role in wound closure. In many cells or tissues, ATP activates P2X7 receptors leading to cation fluxes and cytotoxicity. The corneal epithelium is an excellent model to study the expression of both the full-length P2X7 form (defined as the canonical receptor) and its truncated forms. When Ca2+ mobilization is induced by BzATP, a P2X7 agonist, it is attenuated in the presence of extracellular Mg2+ or Zn2+, negligible in the absence of extracellular Ca2+, and inhibited by the competitive P2X7 receptor inhibitor, A438079. BzATP enhanced phosphorylation of ERK. Together these responses indicate the presence of a canonical or full-length P2X7 receptor. In addition BzATP enhanced epithelial cell migration, and transfection with siRNA to the P2X7 receptor reduced cell migration. Furthermore, sustained activation did not induce dye uptake indicating the presence of truncated or variant forms that lack the ability to form large pores. Reverse transcription-polymerase chain reaction and Northern blot analysis revealed a P2X7 splice variant. Western blots identified a full-length and truncated form, and the expression pattern changed as cultures progressed from monolayer to stratified. Cross-linking gels demonstrated the presence of homo- and heterotrimers. We examined epithelium from age matched diabetic and non-diabetic corneas patients and detected a 4-fold increase in P2X7 mRNA from diabetic corneal epithelium compared to non-diabetic controls and an increased trend in expression of P2X7variant mRNA. Taken together, these data indicate that corneal epithelial cells express full-length and truncated forms of P2X7, which ultimately allows P2X7 to function as a multifaceted receptor that can mediate cell proliferation and migration or cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.