With a multiphase converter, the phase-shedding function dedicated to maximizing the power efficiency, in a manner that is dependent on the load current, is always provided by a centralized controller that induces a Single Point of Failure (SPOF). The objective of this study is to obtain a decentralized control approach to implement this function by removing any SPOF. The method consists of using identical local controllers, each associated with a converter phase, that communicate with each other in a daisy-chain structure. Instead of measuring the global output current to determine the optimal number of active phases required, each local controller measures its own leg current and takes a local decision based on threshold crossing management and inter-controller communications. Functional simulations are carried out on a 5-leg 12 V/1.2 V 60 W multiphase converter supplying a modern microcontroller. They demonstrate that the number of active phases is well adjusted, in a dynamic manner, depending on the load current level. Specific events such as load current inrush or the start-up sequence are analyzed to guarantee optimal transient responses. A maximum power efficiency tracking ability is also demonstrated. Finally, it is shown that this control strategy allows phase shedding to be implemented using as many phases as desired, in a modular manner, thereby avoiding any centralized processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.