Inhibiting MYC has long been considered unfeasible, although its key role in human cancers makes it a desirable target for therapeutic intervention. One reason for its perceived undruggability was the fear of catastrophic side effects in normal tissues. However, we previously designed a dominant-negative form of MYC called Omomyc and used its conditional transgenic expression to inhibit MYC function both in vitro and in vivo. MYC inhibition by Omomyc exerted a potent therapeutic impact in various mouse models of cancer, causing only mild, well-tolerated, and reversible side effects. Nevertheless, Omomyc has been so far considered only a proof of principle. In contrast with that preconceived notion, here, we show that the purified Omomyc mini-protein itself spontaneously penetrates into cancer cells and effectively interferes with MYC transcriptional activity therein. Efficacy of the Omomyc mini-protein in various experimental models of non–small cell lung cancer harboring different oncogenic mutation profiles establishes its therapeutic potential after both direct tissue delivery and systemic administration, providing evidence that the Omomyc mini-protein is an effective MYC inhibitor worthy of clinical development.
Specific heterodimerization plays a crucial role in the regulation of the biology of the cell. For example, the specific heterodimerization between the b-HLH-LZ transcription factors c-Myc and Max is a prerequisite for c-Myc transcriptional activity that leads to cell growth, proliferation and tumorigenesis. On the other hand, the Mad proteins can compete with c-Myc for Max. The Mad/Max heterodimer antagonizes the effect of the c-Myc/Max heterodimer. In this contribution, we have focused on the specific heterodimerization between the b-HLH-LZ domains of c-Myc and Max using CD and NMR. While the c-Myc and Max b-HLH-LZ domains are found to preferentially form a heterodimer; we demonstrate for the first time that a significant population of the Max homodimeric b-HLH-LZ can also form and hence interferes significantly with the specific heterodimerization. This indicates that the Max/Max homodimer can also interfere with c-Myc/Max functions, therefore adding to the complexity of the regulation of transcription by the Myc/Max/Mad network. The demonstration of the existence of the homodimeric population was made possible by the application of numerical routines that enable the simulation of composite spectroscopic signal (e.g. CD) as a function of temperature and total concentration of proteins. From a systems biology perspective, our routines may be of general interest as they offer the opportunity to treat many competing equilibriums in order to predict the probability of existence of protein complexes.
The b-HLH-LZ family of transcription factors contains numerous proteins including the Myc and Mad families of proteins. Max heterodimerizes with other members to bind the E-Box DNA sequence in target gene promoters. Max is the only protein in this network that recognizes and binds E-Box DNA sequences as a homodimer in vitro and represses transcription of Myc target genes in vivo. Key information such as the structure of p21 Max, the complete gene product, and its KD in the absence of DNA are still unknown. Here, we report the characterization of the secondary and quaternary structures, the dimerization and DNA binding of p21 Max and a thermodynamically stable mutant. The helical content of p21 Max indicates that its N-terminal and C-terminal regions are unstructured in the absence of DNA. NMR experiments further support the location of folded and unfolded domains. We also show that p21 Max has an apparent KD (37 degrees C) of 7 x 10(-6), a value 10-100 times smaller than the b-HLH-LZ itself. We demonstrate that electrostatic repulsions are responsible for the higher KD of the b-HLH-LZ. Finally, we show that a p21 Max double mutant forms a very stable dimer with a KD (37 degrees C) of 3 x 10(-10) and that the protein/DNA complex depicts a higher temperature of denaturation than p21 Max/DNA complex. Our results indicate that Max could homodimerize, bind DNA, and repress transcription in vivo and that its mutant could be more efficient at repressing the expression of c-Myc target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.