The MAGE gene family is characterized by a conserved domain (MAGE Homology Domain). A subset of highly homologous MAGE genes (group A; MAGE-A) belong to the chromosome X-clustered cancer͞testis antigens. MAGE-A genes are normally expressed in the human germ line and overexpressed in various tumor types; however, their biological function is largely unknown. Here we present evidence indicating that MageA2 protein, belonging to the MAGE-A subfamily, confers wild-type-p53-sensitive resistance to etoposide (ET) by inducing a novel p53 inhibitory loop involving recruitment of histone deacetylase 3 (HDAC3) to MageA2͞p53 complex, thus strongly down-regulating p53 transactivation function. In fact, enhanced MageA2 protein levels, in addition to ET resistance, correlate with impaired acetylation of both p53 and histones surrounding p53-binding sites. Association between MAGE-A expression levels and resistance to ET treatment is clearly shown in short-term cell lines obtained from melanoma biopsies harboring wild-type-p53, whereas cells naturally, or siRNAmediated expressing low MAGE-A levels, correlate with enhanced p53-dependent sensitivity to ET. In addition, combined trichostatin A͞ET treatment in melanoma cells expressing high MAGE-A levels reestablishes p53 response and reverts the chemoresistance.
In this study, we demonstrate that the subcellular localization of the mineralocorticoid receptor (MR) is regulated by tetratricopeptide domain (TPR) proteins. The high-molecular-weight immunophilin (IMM) FKBP52 links the MR-hsp90 complex to dynein/dynactin motors favoring the cytoplasmic transport of MR to the nucleus. Replacement of this hsp90-binding IMM by FKBP51 or the TPR peptide favored the cytoplasmic localization of MR. The complete movement machinery, including dynein and tubulin, could be recovered from paclitaxel/GTP-stabilized cytosol and was fully reassembled on stripped MR immune pellets. The whole MR-hsp90-based heterocomplex was transiently recovered in the soluble fraction of the nucleus after 10 min of incubation with aldosterone. Moreover, cross-linked MR-hsp90 heterocomplexes accumulated in the nucleus in a hormone-dependent manner, demonstrating that the heterocomplex can pass undissociated through the nuclear pore. On the other hand, a peptide that comprises the DNA-binding domain of MR impaired the nuclear export of MR, suggesting the involvement of this domain in the process. This study represents the first report describing the entire molecular system that commands MR nucleocytoplasmic trafficking and proposes that the MR-hsp90-TPR protein heterocomplex is dissociated in the nucleus rather than in the cytoplasm.The mineralocorticoid receptor (MR) is a member of the steroid/thyroid superfamily of nuclear receptors whose transcriptional activity is triggered by aldosterone binding under normal physiologic conditions. Polarized epithelial tissues such as the distal nephron and colon are considered the classical targets of mineralocorticoids to control salt-water balance by induction of sodium reabsorption and thereby regulation of extracellular fluid volume and blood pressure. MR expression and function also extend to nonepithelial cells, such as hippocampal and hypothalamic neurons, cardiomyocytes, vascular endothelium, and adipocytes (for recent reviews, see references 65 and 52 and references therein).MR shares considerable homology with the glucocorticoid receptor (GR), which is exemplified by the ability of some glucocorticoids to bind both receptors. It is now well established (45) that the GR (the best-studied member of the family) forms heterocomplexes with the 90-kDa and 70-kDa heat shock proteins (hsp90 and hsp70, respectively), the acidic protein p23, and proteins that possess sequences of 34 amino acids repeated in tandems, the tetratricopeptide repeat (TPR) proteins. Some of these hsp90-binding TPR proteins have peptidylprolyl-isomerase activity and are intracellular receptors for immunosuppressant drugs such as FK506, rapamycin, and cyclosporine. They belong to the relatively conserved large family of proteins known as immunophilins (IMMs) (48). Among the members of this family, some IMMs have been recovered in steroid receptor-hsp90 complexes, i.e., FKBP52, FKBP51, CyP40, and three IMM-like proteins, protein phosphatase 5 (PP5), XAP2/ARA9, and WISp39 (33, 44). Even though th...
The regulation of cell migration is a highly complex process that is often compromised when cancer cells become metastatic. The microtubule cytoskeleton is necessary for cell migration, but how microtubules and microtubule-associated proteins regulate multiple pathways promoting cell migration remains unclear. Microtubule plus-end binding proteins (+TIPs) are emerging as important players in many cellular functions, including cell migration. Here we identify a +TIP, GTSE1, that promotes cell migration. GTSE1 accumulates at growing microtubule plus ends through interaction with the EB1+TIP. The EB1-dependent +TIP activity of GTSE1 is required for cell migration, as well as for microtubule-dependent disassembly of focal adhesions. GTSE1 protein levels determine the migratory capacity of both nontransformed and breast cancer cell lines. In breast cancers, increased GTSE1 expression correlates with invasive potential, tumor stage, and time to distant metastasis, suggesting that misregulation of GTSE1 expression could be associated with increased invasive potential.
TP53INP1 (tumor protein 53-induced nuclear protein 1) is a tumor suppressor, whose expression is downregulated in cancers from different organs. It was described as a p53 target gene involved in cell death, cell-cycle arrest and cellular migration. In this work, we show that TP53INP1 is also able to interact with ATG8-family proteins and to induce autophagy-dependent cell death. In agreement with this finding, we observe that TP53INP1, which is mainly nuclear, relocalizes in autophagosomes during autophagy where it is eventually degraded. TP53INP1-LC3 interaction occurs via a functional LC3-interacting region (LIR). Inactivating mutations of this sequence abolish TP53INP1-LC3 interaction, relocalize TP53INP1 in autophagosomes and decrease TP53INP1 ability to trigger cell death. Interestingly, TP53INP1 binds to ATG8-family proteins with higher affinity than p62, suggesting that it could partially displace p62 from autophagosomes, modifying thereby their composition. Moreover, silencing the expression of autophagy related genes (ATG5 or Beclin-1) or inhibiting caspase activity significantly decreases cell death induced by TP53INP1. These data indicate that cell death observed after TP53INP1-LC3 interaction depends on both autophagy and caspase activity. We conclude that TP53INP1 could act as a tumor suppressor by inducing cell death by caspasedependent autophagy. Increased resistance to cell death participates in pancreatic cancer progression. Cells unable to undergo self elimination accumulate mutations and epigenetic modifications that in turn induce uncontrolled replication. 1 Various concomitant mechanisms exist in normal cells to induce death and, as consequence, a number of known cell-death regulators are missing in cancer cells. One of the most studied is the tumor suppressor TP53, which is inactivated in 450% of pancreatic tumors. 2 p53 induces cell death by both direct permeabilization of the outer mitochondrial membrane or translocation to the nucleus where it activates the transcription of several target genes. One of the p53 target genes is TP53INP1 (tumor protein 53-induced nuclear protein 1). 3-6 p53-dependent expression of TP53INP1 is triggered in response to several stress agents such as mutagens, ethanol, heat shock or conditions promoting reactive oxygen species formation (i.e., exposure to UV light or g-irradiation). 4,6 TP53INP1 interacts with kinases, HIPK2 and PKCd, which in turn phosphorylate p53 creating a positive feedback loop between p53 and TP53INP1. 7,8 Our laboratory demonstrated that TP53INP1 is a tumor suppressor on the basis of the following observations: (i) TP53INP1 deficient mice present with an increased susceptibility to tumor development; (ii) TP53INP1 is lost at very early stages of pancreatic carcinogenesis through a mechanism involving the oncogenic miR-155 microRNA and (iii) when TP53INP1 expression is restored in pancreatic cells, it suppresses xenograft growth by increasing apoptotic cell death through a caspase-dependent mechanism. 3,9,10 More recently, in an attempt t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.