This paper investigates the replacement of a conventional steel coil spring with a composite disc spring with the aim of minimizing its weight. Simulation in the CAD system Siemens NX 12 was used to determine the composite disc spring's behavior. The regression functions were stated based on the numerical simulation. Based on the regression functions the solution with the minimum weight was found using software programmed in Matlab. The prototype discs were manufactured from carbon fibre prepreg. Their load-deflection characteristics were tested and compared with the designed values. The experimental results show that using this solution reduces the weight by about 30% in this case.
This paper deal with comparison of mechanical properties of composite sandwich panel with aluminium honeycomb core which is determined by experimental measurement, analytic calculation and numerical simulation. The goal was to compared four composite sandwich panels. The composite sandwich panels were made of two different aluminium honeycomb cores with density 32 and 72 kg.m-3 and two different layup of skin with 4 and 5 layers. The comparison was performed on a three-point bend test with support span 400 mm. This paper confirms the possibility of a very precise design of a composite sandwich panel with an aluminium honeycomb core using analytical calculation and numerical simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.