The onshore central Corinth rift contains a syn-rift succession >3 km thick deposited in 5-15 kmwide tilt blocks, all now inactive, uplifted and deeply incised. This part of the rift records upward deepening from fluviatile to lake-margin conditions and finally to sub-lacustrine turbidite channel and lobe complexes, and deep-water lacustrine conditions (Lake Corinth) were established over most of the rift by 3.6 Ma. This succession represents the first of two phases of rift development -Rift 1 from 5.0-3.6 to 2.2-1.8 Ma and Rift 2 from 2.2-1.8 Ma to present. Rift 1 developed as a 30 kmwide zone of distributed normal faulting. The lake was fed by four major N-to NE-flowing antecedent drainages along the southern rift flank. These sourced an axial fluvial system, Gilbert fan deltas and deep lacustrine turbidite channel and lobe complexes. The onset of Rift 2 and abandonment of Rift 1 involved a 30 km northward shift in the locus of rifting. In the west, giant Gilbert deltas built into a deepening lake depocentre in the hanging wall of the newly developing southern border fault system. Footwall and regional uplift progressively destroyed Lake Corinth in the central and eastern parts of the rift, producing a staircase of deltaic and, following drainage reversal, shallow marine terraces descending from >1000 m to present-day sea level. The growth, linkage and death of normal faults during the two phases of rifting are interpreted to reflect self-organization and strain localization along co-linear border faults. In the west, interaction with the Patras rift occurred along the major Patras dextral strike-slip fault. This led to enhanced migration of fault activity, uplift and incision of some early Rift 2 fan deltas, and opening of the Rion Straits at ca. 400-600 ka. The landscape and stratigraphic evolution of the rift was strongly influenced by regional palaeotopographic variations and local antecedent drainage, both inherited from the Hellenide fold and thrust belt.
Sedimentation in hangingwall dipslope settings is still a relatively underexplored topic in rift basin studies. A better understanding of the evolution of marine sedimentary environments in this kind of settings has to address the variations occurring both along the strike and down the dipslope.Previous work was mainly built on the analysis of subsurface data, relying on the visualization of coarse resolution (10s of m) seismic sections and sparsely located borehole logs (km apart). This Accepted ArticleThis article is protected by copyright. All rights reserved. study focuses on the sedimentology and stratal arrangement of excellent quality Miocene marine early syn-rift and rift climax successions continuously exposed for more than 20 km along the strike of the hangingwall dipslope in the El Qaa Fault Block, Suez Rift, Egypt. The integration of traditional sedimentary field techniques and terrestrial LIDAR scanning allowed for a detailed analysis of dip and dip direction for the different depositional units. Three different phases of tilting were identified for the hangingwall dipslope, which controlled the overall evolution of the marine sedimentary environment in the area. The tilt of the hangingwall not only determined variations in facies, thickness and grain-size of the deposits down the dipslope but also along its strike. The studied exposures in the El Qaa Fault Block dipslope constitute a unique outcrop analogue for marine sedimentation in hangingwall diplsopes.
Early Pleistocene synrift deltas developed along the southern Corinth rift margin were deposited in a single, dominantly lacustrine depocenter and were subject to the same climate-related base-level and sediment supply cyclicity. Two synrift deltas, just 50 km apart, show markedly different sequence geometry and evolution related to their location along the evolving border fault. In the west, strongly aggradational fan deltas (>600 m thick; 2–4 km radius) deposited in the immediate hanging wall of the active border fault comprise stacked 30–100 m thick stratal units bounded by flooding surfaces. Each unit evolves from aggradational to progradational with no evidence for abrupt subaerial exposure or fluvial incision. In contrast, in the central rift, the border fault propagated upward into an already deep lacustrine environment, locating rift-margin deltas 15 km into the footwall. The deltas here have a radius of >9 km and comprise northward downstepping and offlapping units, 50–200 m thick, that unconformably overlie older synrift sediments and are themselves incised. The key factors driving the marked variation in sequence stratigraphic architecture are: (1) differential uplift and subsidence related to position with respect to the border fault system, and (2) inherited topography that influenced shoreline position and offshore bathymetry. Our work illustrates that stratal units and their bounding surfaces may have only local (<10 km) extent, highlighting the uncertainty involved in assigning chronostratigraphic significance to systems tracts and in calculating base-level changes from stratigraphy where marked spatial variations in uplift and subsidence occur
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.