This paper presents results from a study of the fundamental physics of ice-crystal ice accretion using a NACA 0012 airfoil at the National Research Council of Canada (NRC) Research Altitude Test Facility in August 2017. These tests were a continuation of work which began in 2010 as part of a joint collaboration between NASA and NRC. The research seeks to generate icing conditions representative of those that occur inside a jet engine when ingesting ice crystals. In this test, an airfoil was exposed to mixed-phase icing conditions and the resulting ice accretions were recorded and analyzed. This paper details the specific objectives, procedures, and measurements which included the aero-thermal and cloud measurements. The objectives were built upon observations and hypothesis generated from several previous test campaigns regarding mixed-phase ice-crystal icing. The specific objectives included (A) ice accretions under different wet-bulb temperatures, (B) investigations of steady-state ice shapes previously reported in the literature, (C) total water content variations in search of a threshold for accretion, and (D) probe characterization related to measuring melt fraction which is important to characterize the mixed-phase condition. The resulting ice accretions and conditions leading to such accretions are intended to help extend NASA's predictive iceaccretion codes to include conditions occurring in engine ice-crystal icing.
A new aerodynamic open-circuit test rig for studying boundary layer ingestion (BLI) propulsion has been developed by National Research Council of Canada. The purpose is to demonstrate the advantages of BLI in reducing the power required for a given thrust and to validate the performance of BLI fan concepts. The rig consists of a boundary layer generator to simulate boundary layer development over an aircraft fuselage. The boundary layer generator can be used to create a natural boundary layer due to skin friction but also comprises an array of perforated plates through which pressurised air can be blown to manipulate the boundary layer thickness. The size of the boundary layer thickness can be controlled upstream of the fan blades. Parametric studies of boundary layer thickness were then feasible. The test calibration was conducted to validate the concept.
A design of a sub-scale Boundary Layer Ingestion (BLI) fan for a transonic test rig is presented. The fan is intended to be used in flow conditions with varying distortion patterns representative of a BLI application on an aircraft. The sub-scale fan design is based on a design study of a full-scale fan for a BLI demonstration project for a Fokker 100 aircraft. CFD results from the full-scale fan design and the ingested distortion pattern from CFD analyses of the whole aircraft are used as inputs for this study. The sub-scale fan is designed to have similar performance characteristics to the full-scale fan within the capabilities of the test facility. The available geometric rig envelope in the test facility necessitates a reduction in geometric scale and consideration of the operating conditions. Fan blades and vanes are re-designed for these conditions in order to mitigate the effects of the scaling. The effects of reduced size, increased relative tip clearance and thicknesses of the blades and vanes are evaluated as part of the step-by-step adaption of the design to the sub-scale conditions. Finally, the installation effects in the rig are simulated including important effects of the by-pass flow on the running characteristics and the need to control the effective fan nozzle area in order to cover the available fan operating range. The predicted operating behaviour of the fan as installed in the coming transonic test rig gives strong indication that the sub-scale fan tests will be successful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.