A new theoretical approach for turbulent flows based on Lie-group analysis is presented. It unifies a large set of ‘solutions’ for the mean velocity of stationary parallel turbulent shear flows. These results are not solutions in the classical sense but instead are defined by the maximum number of possible symmetries, only restricted by the flow geometry and other external constraints. The approach is derived from the Reynolds-averaged Navier–Stokes equations, the fluctuation equations, and the velocity product equations, which are the dyad product of the velocity fluctuations with the equations for the velocity fluctuations. The results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the centre of a Couette flow and in the centre of a rotating channel flow, and a new exponential mean velocity profile not previously reported that is found in the mid-wake region of high Reynolds number flat-plate boundary layers. The algebraic scaling law is confirmed in both the centre and the near-wall regions in both experimental and DNS data of turbulent channel flows. In the case of the logarithmic law of the wall, the scaling with the distance from the wall arises as a result of the analysis and has not been assumed in the derivation. All solutions are consistent with the similarity of the velocity product equations to arbitrary order. A method to derive the mean velocity profiles directly from the two-point correlation equations is shown.
Under consideration for publication in J. Fluid Mech. 1 New Scaling Laws for Turbulent PoiseuilleFlow with Wall Transpiration A fully developed, turbulent Poiseuille flow with wall transpiration, i.e. uniform blowing and suction on the lower and upper walls correspondingly, is investigated by both direct numerical simulation (DNS) of the three-dimensional, incompressible Navier-Stokes equations and Lie symmetry analysis. The latter is used to find symmetry transformations and in turn to derive invariant solutions of the set of two-and multi-point correlation equations. We show that the transpiration velocity is a symmetry breaking which implies a logarithmic scaling law in the core of the channel. DNS validates this result of Lie symmetry analysis and hence aids establishing a new logarithmic law of deficit-type. The region of validity of the new logarithmic law is very different from the usual near-wall log-law and the slope constant in the core region differs from the von Kármán constant and is equal to 0.3. Further, extended forms of the linear viscous sublayer law and the near-wall log-law are also derived, which, as a particular case, include these laws for the classical non-transpirating case. The viscous sublayer at the suction side has an asymptotic suction profile. The thickness of the sublayer increase at high Reynolds and transpiration numbers. For the near-wall log-law we see an indication that it appears at the moderate transpiration rates (0.05 < v 0 /u τ < 0.1) and only at the blowing wall. Finally, from the DNS data we establish a relation between the friction velocity u τ and the transpiration v 0 which turns out to be linear at moderate transpiration rates.
We study the statistical properties of the vorticity field in two-dimensional turbulence. The field is described in terms of the infinite Lundgren–Monin–Novikov (LMN) chain of equations for multi-point probability density functions (pdf’s) of vorticity. We perform a Lie group analysis of the first equation in this chain using the direct method based on the canonical Lie-Bäcklund transformations devised for integro-differential equations. We analytically show that the conformal group is broken for the first LMN equation i.e. for the 1-point pdf at least for the inviscid case but the equation is still conformally invariant on the associated characteristic with zero-vorticity. Then, we demonstrate that this characteristic is conformally transformed. We find this outcome coincides with the numerical results about the conformal invariance of the statistics of zero-vorticity isolines, see e.g. Falkovich (2007 Russian Math. Surv. 63 497–510). The conformal symmetry can be understood as a ‘local scaling’ and its traces in two-dimensional turbulence were already discussed in the literature, i.e. it was conjectured more than twenty years ago in Polyakov (1993 Nucl. Phys. B 396 367–85) and clearly validated experimentally in Bernard et al (2006 Nat. Phys. 2 124–8).
We presently show that the infinite set of multi-point correlation equations, which are direct statistical consequences of the Navier-Stokes equations, admit a rather large set of Lie symmetry groups. This set is considerable extended compared to the set of groups which are implied from the original set of equations of fluid mechanics. Specifically a new scaling group and translational groups of the correlation vectors and all independent variables have been discovered. These new statistical groups have important consequences on our understanding of turbulent scaling laws to be exemplarily revealed by two examples. Firstly, one of the key foundations of statistical turbulence theory is the universal law of the wall with its essential ingredient is the logarithmic law. We demonstrate that the log-law fundamentally relies on one of the new translational groups. Second, we demonstrate that the recently discovered exponential decay law of isotropic turbulence generated by fractal grids is only admissible with the new statistical scaling symmetry. It may not be borne from the two classical scaling groups implied by the fundamental equations of fluid motion and which has dictated our understanding of turbulence decay since the early thirties implicated by the von-Kármán-Howarth equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.