KCNMA1 encodes the α-subunit of the large conductance, voltage and Ca2+-activated (BK) potassium channel and has been reported as a target gene of genomic amplification at 10q22 in prostate cancer. To investigate the prevalence of the amplification in other human cancers, the copy number of KCNMA1 was analyzed by fluorescence-in-situ-hybridization (FISH) in 2,445 tumors across 118 different tumor types. Amplification of KCNMA1 was restricted to a small but distinct fraction of breast, ovarian and endometrial cancer with the highest prevalence in invasive ductal breast cancers and serous carcinoma of ovary and endometrium (3–7%). We performed an extensive analysis on breast cancer tissue microarrays (TMA) of 1,200 tumors linked to prognosis. KCNMA1 amplification was significantly associated with high tumor stage, high grade, high tumor cell proliferation, and poor prognosis. Immunofluorescence revealed moderate or strong KCNMA1 protein expression in 8 out of 9 human breast cancers and in the breast cancer cell line MFM223. KCNMA1-function in breast cancer cell lines was confirmed by whole-cell patch clamp recordings and proliferation assays, using siRNA-knockdown, BK channel activators such as 17ß-estradiol and the BK-channel blocker paxilline. Our findings revealed that enhanced expression of KCNMA1 correlates with and contributes to high proliferation rate and malignancy of breast cancer.
Amplification of 6p22 occurs in about 10-20% of bladder cancers and is associated with enhanced tumour cell proliferation. Candidate target genes for the 6p22 amplicon include E2F3 and the adjacent gene NM_017774. To clarify which gene is representing the main target, we compared the prevalence of the amplification and the functional role of both genes. Amplification of E2F3 and NM_017774 was analysed by fluorescence in situ hybridization on a bladder cancer tissue microarray composed of 2317 cancer samples. Both genes showed amplification in 104 of 893 (11.6%) interpretable tumours and were exclusively found co-amplified. Additional gene expression analysis by real-time polymerase chain reaction in 12 tumour-derived cell lines revealed that amplification of 6p22 was always associated with co-overexpression of E2F3 and NM_017774. Furthermore, RNA interference was used to study the influence of reduced gene expression on cell growth. In tumour cells with and without the 6p22 amplicon, knockdown of E2F3 always lead to unequivocal reduction of proliferation, whereas knockdown of NM_017774 was only capable to slow down cell proliferation in non-amplified cells. Our findings point out that E2F3 but not NM_017774 is driving enhanced proliferation of 6p22 amplified tumour cells. We conclude that E2F3 must be responsible for the growth advantage of 6p22 amplified bladder cancer cells.
Androgen withdrawal is the standard treatment for advanced prostate cancer. Although this therapy is initially effective, nearly all prostate cancers become refractory to it. Approximately 15% of these castration-resistant prostate cancers harbour a genomic amplification at 10q22. The aim of this study was to explore the structure of the 10q22 amplicon and to determine the major driving genes. Application of high-resolution array-CGH using the 244k Agilent microarrays to cell lines with 10q22 amplification allowed us to narrow down the common amplified region to a region of 5.8 megabases. We silenced each of the genes of this region by an RNAi screen in the prostate cancer cell lines PC-3 and 22Rv1. We selected genes with a significant growth reduction in the 10q22 amplified cell line PC-3, but not in the non-amplified 22Rv1 cells, as putative target genes of this amplicon. Immunohistochemical analysis of the protein expression of these candidate genes on a tissue microarray enriched for 10q22 amplified prostate cancers revealed vinculin as the most promising target of this amplicon. We found a strong association between vinculin gene amplification and overexpression (p < 0.001). Further analysis of 443 specimens from across all stages of prostate cancer progression showed that vinculin expression was highest in castration-resistant prostate cancers, but negative or very low in benign prostatic hyperplasia (p < 0.0001). Additionally, high tumour cell proliferation measured by Ki67 expression was significantly associated with high vinculin expression in prostate cancer (p < 0.0001). Our data suggest that vinculin is a major driving gene of the 10q22 amplification in prostate cancer and that vinculin overexpression might contribute to prostate cancer progression by enhancing tumour cell proliferation.
Alterations of chromosome 8, preferentially deletions of 8p and gains of 8q, belong to the most frequent cytogenetic changes in bladder cancer. CMYC on 8q24 is a candidate oncogene in this region. Little is known about the clinical significance of CMYC copy number changes in urinary bladder cancer because its frequency is low and a limited numbers of tumors were analyzed so far. To investigate the impact of CMYC alterations on tumor progression and patient prognosis in bladder cancer, we applied FISH to a tissue microarray containing 2317 bladder cancer samples. Presence of CMYC copy number increase was associated with advanced stage and high grade. CMYC amplifications were seen in 3 of 467 pTa (0.6%), 10 of 247 pT1 (4%) and 11 of 201 pT2–4 urothelial carcinomas (5.5%; p < 0.0001), as well as in 1 of 123 G1 (0.8%), 8 of 470 G2 (1.7%) and 17 of 365 G3 urothelial carcinomas (4.7%; p < 0.0001). CMYC gains were present in 49 of 467 pTa (10.5%), 39 of 247 pT1 (15.8%) and 43 of 201 pT2–4 urothelial carcinoma (21.4%; p < 0.0001), as well as in 7 of 123 G1 (5.7%), 56 of 470 G2 (11.9%) and 72 of 365 G3 urothelial carcinomas (19.7%; p < 0.0001). CMYC copy number changes were unrelated to prognosis of bladder cancer patients. We conclude that alterations of the CMYC gene, including copy number gains and amplifications, are linked to genetically unstable bladder cancers that are characterized by a high histologic grade and/or invasive growth. Patient prognosis was not affected by CMYC gene copy number changes. © 2005 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.