In this paper, we consider the inverse problem of derivative order estimation in a fractional logistic model. In order to solve the direct problem, we use the Grünwald-Letnikov fractional derivative, then the inverse problem is tackled within a Bayesian perspective. To construct the likelihood function, we propose an explicit numerical scheme based on the truncated series of the derivative definition. By MCMC samples of the marginal posterior distributions, we estimate the order of the derivative and the growth rate parameter in the dynamic model, as well as the noise in the observations. To evaluate the methodology, a simulation was performed using synthetic data, where the bias and mean square error are calculated, the results give evidence of the effectiveness for the method and the suitable performance of the proposed model. Moreover, an example with real data is presented as evidence of the relevance of using a fractional model.
We implement the Bayesian statistical inversion theory to obtain the solution for an inverse problem of growth data, using a fractional population growth model. We estimate the parameters in the model and we make a comparison between this model and an exponential one, based on an approximation of Bayes factor. A simulation study is carried out to show the performance of the estimators and the Bayes factor. Finally, we present a real data example to illustrate the effectiveness of the method proposed here and the pertinence of using a fractional model.
In this paper, we consider an initial-boundary value problem for a stochastic non-linear heat equation with Riemann-Liouville spacefractional derivative and white noise on the half-line. We construct the integral representation of the solution and prove existence and uniqueness. Moreover, we adapt stochastic integration methods to approximate the solutions
In this work, we consider an initial boundary-value problem for a stochastic evolution equation with fractional Laplacian and white noise on the first quadrant. To construct the integral representation of solutions we adapt the main ideas of the Fokas method and by using Picard scheme we prove its existence and uniqueness. Moreover, Monte Carlo methods are implemented to find numerical solutions for particular examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.