Orbital angular momentum (OAM), which describes the "phase twist" (helical phase pattern) of light beams, has recently gained interest due to its potential applications in many diverse areas. Particularly promising is the use of OAM for optical communications since: (i) coaxially propagating OAM beams with different azimuthal OAM states are mutually orthogonal, (ii) inter-beam crosstalk can be minimized, and (iii) the beams can be efficiently multiplexed and demultiplexed. As a result, multiple OAM states could be used as different carriers for multiplexing and transmitting multiple data streams, thereby potentially increasing the system capacity. In this paper, we review recent progress in OAM beam generation/detection, multiplexing/demultiplexing, and its potential applications in different scenarios including free-space optical communications, fiber-optic communications, and RF communications. Technical challenges and perspectives of OAM beams are also discussed.
We present a method to efficiently sort orbital angular momentum (OAM) states of light using two static optical elements. The optical elements perform a Cartesian to log-polar coordinate transformation, converting the helically phased light beam corresponding to OAM states into a beam with a transverse phase gradient. A subsequent lens then focuses each input OAM state to a different lateral position. We demonstrate the concept experimentally by using two spatial light modulators to create the desired optical elements, applying it to the separation of eleven OAM states.
One property of electromagnetic waves that has been recently explored is the ability to multiplex multiple beams, such that each beam has a unique helical phase front. The amount of phase front ‘twisting’ indicates the orbital angular momentum state number, and beams with different orbital angular momentum are orthogonal. Such orbital angular momentum based multiplexing can potentially increase the system capacity and spectral efficiency of millimetre-wave wireless communication links with a single aperture pair by transmitting multiple coaxial data streams. Here we demonstrate a 32-Gbit s−1 millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s−1 Hz−1 using four independent orbital–angular momentum beams on each of two polarizations. All eight orbital angular momentum channels are recovered with bit-error rates below 3.8 × 10−3. In addition, we demonstrate a millimetre-wave orbital angular momentum mode demultiplexer to demultiplex four orbital angular momentum channels with crosstalk less than −12.5 dB and show an 8-Gbit s−1 link containing two orbital angular momentum beams on each of two polarizations.
Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks. IntroductionFirst introduced in 1984 by Bennett and Brassard, quantum key distribution (QKD) is a method for distributing a secret key between two parties [1,2]. Due to a fundamental property of quantum physics known as the nocloning theorem, any attempt made by a third party to eavesdrop inevitably leads to errors that can be detected by the sender and receiver [3,4]. Modern QKD schemes conventionally use a qubit system for encoding information, such as the polarization of a photon. Such systems are easily implemented because technology for encoding and decoding information in a qubit state-space is readily available today, enabling system clock rates in the GHz regime [5][6][7]. Recently, the spatial degree of freedom of photons has been identified as an extremely useful resource for transferring information [8,9]. The information transfer capacity of classical communication links has been increased to more than one terabit per second using spatial-mode multiplexing [10]. In addition, it has been theoretically shown that employing multilevel quantum states (qudits) can increase the robustness of a QKD system against eavesdropping [11][12][13][14]. Although the majority of high-dimensional QKD schemes so far have employed time-bin encoding for increasing the alphabet size [15][16][17][18], it is expected that spatial-mode encoding can be alternatively used to enhance the performance of a QKD system considering the recent advances in free-space orbital angular momentum (OAM) communication, .The feasibility of high-dimensional QKD in the spatial domain has been previously demonstrated by encoding information in the transverse linear momentum and position bases [19,20]. While such encoding schemes provide a simple solution for increasing the information capacity, they are not suitable for long-haul optical links due to the cross-talk caused by diffraction. D...
The linear Doppler shift is widely used to infer the velocity of approaching objects, but this shift does not detect rotation. By analysing the orbital angular momentum of the light scattered from a spinning object we observe a frequency shift many times greater than the rotation rate. This rotational frequency shift is still present when the angular momentum vector is parallel to the observation direction. The multiplicative enhancement of the frequency shift may have applications in both terrestrial and astronomical settings for the remote detection of rotating bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.