Previous studies indicate that Cucurbita pepo can phytoextract highly weathered persistent organic pollutants (POPs) from soil and translocate large quantities to aerial tissues. To investigate intraspecific variability in uptake potential, a field study was conducted to quantify the phytoextraction of weathered p,p'-DDE by 21 cultivar varieties of summer squash from two distinct subspecies, C. pepo ssp texana and C. pepo ssp pepo. Significant differences exist between the two subspecies, with average root and stem to soil bioconcentration factors (BCF, dry weight ratio of contaminant concentration in the vegetation to that in the soil) of 7.22 and 5.40 for ssp pepo and of 2.37 and 0.454 for spp texana, respectively. The amounts of weathered p,p-DDE extracted from the soil by ssp pepo and ssp texana were 0.301 and 0.065%, respectively, with maximum values within each subspecies of 0.780 and 0.182%, respectively. The quantities of 14 inorganic elements were determined in both the soil and tissues (roots, stems, leaves, and fruit) of all 21 cultivar varieties. Phosphorus concentrations in the tissues of ssp pepo were 14 (fruit)-73% (stems) greater than those of ssp texana. These data support our hypothesis that the unique ability of certain cultivars of C. pepo to phytoextract highly weathered POPs from soil is the result of low molecular weight organic acid exudation as a unique phosphorus acquisition mechanism.
Photosynthesis is the limiting factor in crop growth models, but metabolism may also limit growth. We hypothesize that, over a wide range of temperature, growth is the minimum of the supply of carbohydrate from photosynthesis, and the demand of carbohydrate to synthesize new tissue. Biosynthetic demand limits growth at cool temperatures and increases exponentially with temperature. Photosynthesis limits growth at warm temperatures and decreases with temperature. Observations of tomato seedlings were used to calibrate a model based on this hypothesis. Model predictions were tested with published data for growth and carbohydrate content of sunflower and wheat. The model qualitatively fitted the response of growth of tomato and sunflower to both cool and warm temperatures. The transition between demand and supply limitation occurred at warmer temperatures under higher light and faster photosynthesis. Modifications were required to predict the observed non-structural carbohydrate (NSC). Some NSC was observed at warm temperatures, where demand should exceed supply. It was defined as a required reserve. Less NSC was found at cool temperatures than predicted from the difference between supply and demand. This was explained for tomato and sunflower, by feedback inhibition of NSC on photosynthesis. This inhibition was much less in winter wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.