Background Nowadays, the use of social media is part of daily life, with more and more people, including governments and health organizations, using at least one platform regularly. Social media enables users to interact among large groups of people that share the same interests and suffer the same afflictions. Notably, these channels promote the ability to find and share information about health and medical conditions. Objective This study aimed to characterize the bowel disease (BD) community on Twitter, in particular how patients understand, discuss, feel, and react to the condition. The main questions were as follows: Which are the main communities and most influential users?; Where are the main content providers from?; What are the key biomedical and scientific topics under discussion? How are topics interrelated in patient communications?; How do external events influence user activity?; What kind of external sources of information are being promoted? Methods To answer these questions, a dataset of tweets containing terms related to BD conditions was collected from February to August 2018, accounting for a total of 24,634 tweets from 13,295 different users. Tweet preprocessing entailed the extraction of textual contents, hyperlinks, hashtags, time, location, and user information. Missing and incomplete information about the user profiles was completed using different analysis techniques. Semantic tweet topic analysis was supported by a lexicon-based entity recognizer. Furthermore, sentiment analysis enabled a closer look into the opinions expressed in the tweets, namely, gaining a deeper understanding of patients’ feelings and experiences. Results Health organizations received most of the communication, whereas BD patients and experts in bowel conditions and nutrition were among those tweeting the most. In general, the BD community was mainly discussing symptoms, BD-related diseases, and diet-based treatments. Diarrhea and constipation were the most commonly mentioned symptoms, and cancer, anxiety disorder, depression, and chronic inflammations were frequently part of BD-related tweets. Most patient tweets discussed the bad side of BD conditions and other related conditions, namely, depression, diarrhea, and fibromyalgia. In turn, gluten-free diets and probiotic supplements were often mentioned in patient tweets expressing positive emotions. However, for the most part, tweets containing mentions to foods and diets showed a similar distribution of negative and positive sentiments because the effects of certain food components (eg, fiber, iron, and magnesium) were perceived differently, depending on the state of the disease and other personal conditions of the patients. The benefits of medical cannabis for the treatment of different chronic diseases were also highlighted. Conclusions This study evidences that Twitter is becoming an influential space for conversation about bowel conditions, namely, patient opinions about associated symptoms and treatments. So, further qualitative and quantitative content analyses hold the potential to support decision making among health-related stakeholders, including the planning of awareness campaigns.
Quorum sensing plays a pivotal role in Pseudomonas aeruginosa's virulence. This paper reviews experimental results on antimicrobial strategies based on quorum sensing inhibition and discusses current targets in the regulatory network that determines P. aeruginosa biofilm formation and virulence. A bioinformatics framework combining literature mining with information from biomedical ontologies and curated databases was used to create a knowledge network of potential anti-quorum sensing agents for P. aeruginosa. A total of 110 scientific articles, corresponding to 1,004 annotations, were so far included in the network and are analysed in this work. Information on the most studied agents, QS targets and methods is detailed. This knowledge network offers a unique view of existing strategies for quorum sensing inhibition and their main regulatory targets and may be used to readily access otherwise scattered information and to help generate new testable hypotheses. This knowledge network is publicly available at http://pcquorum.org/ .
Chemoprevention is the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. In this field, the use of antitumor peptides is of interest as, (i) these molecules are small in size, (ii) they show good cell diffusion and permeability, (iii) they affect one or more specific molecular pathways involved in carcinogenesis, and (iv) they are not usually genotoxic. We have checked the Web of Science Database (23/11/2015) in order to collect papers reporting on bioactive peptide (1691 registers), which was further filtered searching terms such as "antiproliferative," "antitumoral," or "apoptosis" among others. Works reporting the amino acid sequence of an antiproliferative peptide were kept (60 registers), and this was complemented with the peptides included in CancerPPD, an extensive resource for antiproliferative peptides and proteins. Peptides were grouped according to one of the following mechanism of action: inhibition of cell migration, inhibition of tumor angiogenesis, antioxidative mechanisms, inhibition of gene transcription/cell proliferation, induction of apoptosis, disorganization of tubulin structure, cytotoxicity, or unknown mechanisms. The main mechanisms of action of those antiproliferative peptides with known amino acid sequences are presented and finally, their potential clinical usefulness and future challenges on their application is discussed.
Recent computational methodologies, such as individual-based modelling, pave the way to the search for explanatory insight into the collective behaviour of molecules. Many reviews offer an up-to-date perspective about such methodologies, but little is discussed about the practical information requirements involved. The biological information used as input should be easily and routinely determined in the laboratory, publicly available and, preferably, organized in programmatically accessible databases. This review is the first to provide a systematic and comprehensive overview of available resources for the modelling of metabolic events at the molecular scale. The glycolysis pathway of Escherichia coli, which is one of the most studied pathways in Microbiology, serves as case study. This curation addressed structural information about E. coli (i.e. defining the simulation environment), the reactions forming the glycolysis pathway including the enzymes and the metabolites (i.e. the molecules to be represented), the kinetics of each reaction (i.e. behavioural logic of the molecules) and diffusion parameters for all enzymes and metabolites (i.e. molecule movement in the environment). Furthermore, the interpretation of relevant biological features, such as molecular diffusion and enzyme kinetics, and the connection of experimental determination and simulation validation are detailed. Notably, the information from classical theories, such as enzymatic rates and diffusion coefficients, is translated to simulation parameters, such as collision efficiency and particle velocity.
The complex virulence attributes of Candida albicans are an attractive target to exploit in the development of new antifungals and anti-virulence strategies to combat C. albicans infections. Particularly, quorum sensing (QS) has been reported as critical for virulence regulation in C. albicans. This work presents two knowledge networks with up-to-date information about QS regulation and experimentally tested anti-QS and anti-virulence agents for C. albicans. A semi-automatic bioinformatics workflow that combines literature mining and expert curation was used to retrieve otherwise scattered information from the scientific literature. The network representation offers an innovative and continuously updatable means for the Candida research community to query QS and virulence data systematically and in a user-friendly way. Notably, the reconstructed networks show the complexity of QS regulation and the impact that some molecules have on the inhibition of virulence mechanisms responsible for infection establishment (e.g. hyphal development) and perseverance (e.g. biofilm formation). In the future, the compiled knowledge may be used to build decision-making models that help infer new knowledge of practical significance. The knowledge networks are publicly available at http://pcquorum.org/. This Web platform enables the exploration of fungal virulence cues as well as reported inhibitors in a user-friendly fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.