Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400-to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by twophoton isomerization of visual pigments.visual pigment | two-photon absorption | rhodopsin | transretinal electrophysiology | multiscale modeling H uman vision is generally believed to be restricted to a visible light range, although >50% of the sun's radiation energy that reaches earth is in the infrared (IR) range (1). Human rod and cone visual pigments with the 11-cis-retinylidene chromophore absorb in the visible range, with absorption monotonically declining from their maxima of 430-560 nm toward longer wavelengths. The spectral sensitivity of human dim light perception matches well with the absorption spectrum of the rod visual pigment, rhodopsin (2, 3). Activation of visual pigments is temperature independent around their absorption peaks (λ max ), but at longer wavelengths, the lower energy photons must be supplemented by heat to achieve chromophore photoisomerization (4). Long wavelength-sensitive visual pigments of vertebrates exhibit maximal absorption at the ∼500-to ∼625-nm range. Pigments with λ max > 700 nm are theoretically possible, but the high noise due to spontaneous thermal activation would render them impractical (5). At human body temperature and with 1,050-nm stimulation, the sensitivity of the peripheral retina to one-photon (1PO) stimulation is less than 10 −12 of its maximum value at 505 nm (4, 6). Indeed, reports about human IR vision can be found in the literature, although they are fragmentary and do not describe the mechanism of this phenomenon.With the invention of radar during World War II, it was immediately questioned if pilots could detect high intensity radiation in the IR range of the spectrum. Wald and colleagues reported that at wavelengths above 800 nm, rod photoreceptors become more sensitive than cones, resulting in perception of IR signals as white light selectively in the peripheral retina (6). They proposed that relative spectral sensitivity declines monotonically toward longer wavele...
We present a flexible and efficient framework for multiscale modeling in computational chemistry (MiMiC). It is based on a multiple-program multiple-data (MPMD) 1 model with loosely coupled programs. Fast data exchange between programs is achieved through the use of MPI intercommunicators. This allows exploiting the existing parallelization strategies used by the coupled programs while maintaining a high degree of flexibility. MiMiC has been used in a new electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) implementation coupling the highly efficient CPMD and GROMACS programs but it can also be extended to use other programs.The framework can also be utilized to extend the partitioning of the system into several domains that can be treated using different models, such as models based on wave function or density functional theory as well as coarse-graining and continuum models. The new QM/MM implementation treats long-range electrostatic QM-MM interactions through the multipoles of the QM subsystem which substantially reduces the computational cost without loss of accuracy compared to an exact treatment. This enables QM/MM molecular dynamics (MD) simulations of very large systems.
The ultrafast nuclear dynamics of the acetylene cation C 2 H 2 + following photoionization of the neutral molecule is investigated using an extreme-ultraviolet pump/infrared probe setup. The observed modulation of the C 2 H + fragment ion yield with pump-probe delay is related to structural changes induced by the extreme-ultraviolet pump pulse taking place on the femtosecond timescale. High-level simulations suggest that the trans-bending and CC bond stretching motion of the C 2 H 2 + cation govern the observed interaction with the infrared pulse. Depending on the molecular configuration at arrival of the infrared pulse, it either transfers population to higher-lying states or to the C 2 H 2 + ground state, thereby enhancing or lowering the C 2 H + yield. Our ultrafast pump-probe scheme can thus be used to track excited state nuclear dynamics with a resolution of a few femtoseconds, leading the way to studying fast dynamics also in larger hydrocarbon molecules.
A new quinoxaline-fused tetrathiafulvalene-based sensitizer has been prepared and characterized. The resulting power conversion efficiency of 6.47% represents the best performance to date for tetrathiafulvalene-sensitized solar cells.
Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi) static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.