Platinum-based anticancer coordination compounds are widely used in the treatment of many tumor types, where they are very effective but also cause severe side effects. Organoplatinum compounds are significantly less investigated than the analogous coordination compounds. We report here rollover cyclometalated Pt compounds based on 2,2'-bipyridine which are demonstrated to be potent antitumor agents both in vitro and in vivo. Variation of the co-ligands on the Pt(2,2'-bipyridine) backbone resulted in the establishment of structure-activity relationships. They showed that the biological activity was in general inversely correlated with the reaction kinetics to biomolecules as shown for amino acids, proteins, and DNA. The less stable compounds caused higher reactivity with biomolecules and were shown to induce p53-dependent DNA damage. In contrast, the presence of bulky PTA and PPh ligands was demonstrated to cause lower reactivity and increased antineoplastic activity. Such compounds were devoid of DNA-damaging activity and induced ATF4, a component of the endoplasmic reticulum (ER) stress pathway. The lead complex inhibited tumor growth similar to oxaliplatin while showing no signs of toxicity in test mice. Therefore, we demonstrated that it is possible to fine-tune rollover-cyclometalated Pt(II) compounds to target different cancer pathways and be a means to overcome the side effects associated with cisplatin and analogous compounds in cancer chemotherapy.
The influence of glycine on the iron phosphorous alloy electrodeposition was investigated by electrochemical quartz microbalance (EQMB), in-situ external reflection FTIR spectroscopy, and electrochemical impedance spectroscopy (EIS) measurements. An increase of glycine concentration leads to a decrease of the iron-phosphorous alloy electrodeposition rate and an increase of hydrogen evolution. Strong adsorption of glycine species, such as H 2 (gly) þ , H(gly) ± or/and Fe(gly) þ , have been observed during the hydrogen evolution and the Fe-P deposition reaction. Due to the concurrent hydrogen evolution the pH attains higher values at the interface than in the electrolyte bulk (pH2.5). The formation of adsorbed Fe(gly) þ and of the chelate complex Fe(gly) 2 in solution avoids the precipitation of Fe(OH) 2 in the pH range between 2.5 and ca. 7 at the interface. The phosphorous content of the iron phosphorous alloy deposit increases with the glycine concentration. This is due to a lower deposition rate of iron caused by the adsorption of Fe(gly) þ , while the hypophosphite reduction rate to phosphorous increases.
The cathodic and anodic behavior of graphene oxide was investigated in aqueous suspension on platinum. The anodic deposition relied on the poly-anionic character of graphene oxide with increasing pH. It took place simultaneously with the oxidation of phosphate to peroxodiphosphate and the oxygen evolution. Scanning electrochemical microscopy showed an inhomogeneous anodic adsorption. The cathodic deposition is based on the reduction of graphene oxide to reduced graphene oxide which showed reduced solubility. Anodic oxygen evolution led to the desorption of graphene oxide anions, whereas hydrogen evolution blocked further adsorption of reduced graphene oxide, but caused no desorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.