Microstructured reactors are emerging engineering tools for the development of biocatalytic conversions in continuous flow. A promising layout involves flow microchannels that are wall‐coated with enzyme. As protein immobilization within closed microstructures is challenging, we suggested a confluent design of enzyme and microreactor: fusion to the silica‐binding module Zbasic2 is used to engineer enzymes for high‐affinity oriented attachment to the plain wall surface of glass microchannels. In this study of sucrose phosphorylase, we examined the effects of multiple Zbasic2 modules in a single enzyme molecule on the activity and adsorption stability of the phosphorylase immobilized in a glass microchannel reactor. Compared to the “monovalent” enzyme, two Zbasic2 modules, present in tandem repeat at the N‐terminus, separated at the N‐ and C‐terminus of an enzyme monomer, or arranged N‐terminally in a protein homodimer, boosted the effectiveness of the immobilized phosphorylase by up to twofold. They attenuated (up to 12‐fold) the elution of the wall‐coated enzyme during continuous reactor operation. The divalent phosphorylase was distributed uniformly on the microchannel surface and approximately 70 % activity could still be retained after 690 reactor cycles. Reaction–diffusion regime analysis in terms of the second Damköhler number (DaII≤0.02) revealed the absence of mass transport limitations on the conversion rate. The synthesis of α‐d‐glucose 1‐phosphate occurred with a productivity of ∼14 mm min−1 at 50 % substrate conversion (50 mm). The use of wall‐coated enzyme microreactors in high‐performance biocatalytic reaction engineering is supported strongly.
C-Analogues of the canonical N-nucleosides have considerable importance in medicinal chemistry and are promising building blocks of xenobiotic nucleic acids (XNA) in synthetic biology. Although well established for synthesis of N-nucleosides, biocatalytic methods are lacking in C-nucleoside synthetic chemistry. Here, we identify pseudouridine monophosphate C-glycosidase for selective 5-β-C-glycosylation of uracil and derivatives thereof from pentose 5-phosphate (d-ribose, 2-deoxy-d-ribose, d-arabinose, d-xylose) substrates. Substrate requirements of the enzymatic reaction are consistent with a Mannich-like addition between the pyrimidine nucleobase and the iminium intermediate of enzyme (Lys166) and open-chain pentose 5-phosphate. β-Elimination of the lysine and stereoselective ring closure give the product. We demonstrate phosphorylation-glycosylation cascade reactions for efficient, one-pot synthesis of C-nucleoside phosphates (yield: 33 – 94%) from unprotected sugar and nucleobase. We show incorporation of the enzymatically synthesized C-nucleotide triphosphates into nucleic acids by RNA polymerase. Collectively, these findings implement biocatalytic methodology for C-nucleotide synthesis which can facilitate XNA engineering for synthetic biology applications.
As a crucial factor of their therapeutic efficacy, the currently marketed mRNA vaccines feature uniform substitution of uridine (U) by the corresponding C-nucleoside, pseudouridine (Ψ), in 1-N-methylated form. Synthetic supply of the mRNA building block (1-N-Me-Ψ−5’-triphosphate) involves expedient access to Ψ as the principal challenge. Here, we show selective and atom-economic 1N-5C rearrangement of β-d-ribosyl on uracil to obtain Ψ from unprotected U in quantitative yield. One-pot cascade transformation of U in four enzyme-catalyzed steps, via d-ribose (Rib)-1-phosphate, Rib-5-phosphate (Rib5P) and Ψ-5’-phosphate (ΨMP), gives Ψ. Coordinated function of the coupled enzymes in the overall rearrangement necessitates specific release of phosphate from the ΨMP, but not from the intermediary ribose phosphates. Discovery of Yjjg as ΨMP-specific phosphatase enables internally controlled regeneration of phosphate as catalytic reagent. With driving force provided from the net N-C rearrangement, the optimized U reaction yields a supersaturated product solution (∼250 g/L) from which the pure Ψ crystallizes (90% recovery). Scale up to 25 g isolated product at enzyme turnovers of ∼105 mol/mol demonstrates a robust process technology, promising for Ψ production. Our study identifies a multistep rearrangement reaction, realized by cascade biocatalysis, for C-nucleoside synthesis in high efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.