Regularization techniques based on the Golub-Kahan iterative bidiagonalization belong among popular approaches for solving large ill-posed problems. First, the original problem is projected onto a lower dimensional subspace using the bidiagonalization algorithm, which by itself represents a form of regularization by projection. The projected problem, however, inherits a part of the ill-posedness of the original problem, and therefore some form of inner regularization must be applied. Stopping criteria for the whole process are then based on the regularization of the projected (small) problem.In this paper we consider an ill-posed problem with a noisy right-hand side (observation vector), where the noise level is unknown. We show how the information
This paper revisits the analysis of the total least squares (TLS) problem AX ≈ B with multiple right-hand sides given by Van Huffel and Vandewalle in the monograph, The Total Least Squares Problem: Computational Aspects and Analysis, SIAM, Philadelphia, 1991. The newly proposed classification is based on properties of the singular value decomposition of the extended matrix ½BjA. It aims at identifying the cases when a TLS solution does or does not exist and when the output computed by the classical TLS algorithm, given by Van Huffel and Vandewalle, is actually a TLS solution. The presented results on existence and uniqueness of the TLS solution reveal subtleties that were not captured in the known literature.
Golub-Kahan iterative bidiagonalization represents the core algorithm in several regularization methods for solving large linear noise-polluted ill-posed problems. We consider a general noise setting and derive explicit relations between (noise contaminated) bidiagonalization vectors and the residuals of bidiagonalization-based regularization methods LSQR, LSMR, and CRAIG. For LSQR and LSMR residuals we prove that the coefficients of the linear combination of the computed bidiagonalization vectors reflect the amount of propagated noise in each of these vectors. For CRAIG the residual is only a multiple of a particular bidiagonalization vector. We show how its size indicates the regularization effect in each iteration by expressing the CRAIG solution as the exact solution to a modified compatible problem. Validity of the results for larger two-dimensional problems and influence of the loss of orthogonality is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.