The epidermal growth factor (EGF) receptor is a transmembrane glycoprotein of relative molecular mass 170,000 with intrinsic ligand-dependent protein tyrosine kinase activity. Binding of EGF to its receptor activates a number of immediate biochemical processes, such as alterations of intracellular free calcium, pH, and increased transcription of several responsive genes, which usually culminate many hours later in DNA replication and cell division. Abolishing the tyrosine kinase activity of three related oncogenes, v-src, v-mos, and v-fps, eliminates their capacity to transform cell. Several reports have suggested that specific aspects of EGF receptor function are independent of the intrinsic tyrosine kinase activity; however, these studies used an antibody against EGF receptor which failed to activate phosphorylation of exogenous substrates and an insertional mutation in the EGF receptor tyrosine kinase domain which had not been shown to abolish protein kinase activity in cells. Because many transmembrane receptors interact with intrinsic membrane proteins to activate second messenger systems, it is important to resolve experimentally whether mechanisms, in addition to activation of the intrinsic tyrosine kinase activity, mediate some EGF actions. From functional analyses of an EGF receptor containing a single amino-acid mutation at a site required for phosphate transfer from ATP, we conclude that the tyrosine kinase activity of the EGF receptor is essential for the diverse biochemical effects of EGF, including rapid alterations in intracellular calcium, activation of gene transcription, receptor down-regulation and the ultimate stimulatory effects on cell proliferation.
Efficient unidirectional killing by cytotoxic T lymphocytes (CTL) requires translocation of the microtubule organizing center (MTOC) to the target cell contact site. Here we utilize modulated polarization microscopy and computerized 3D reconstruction of tubulin and LFA-1 immunofluorescence images to investigate how this is accomplished. The results show that the MTOC is drawn vectorially to the contact site by a microtubule sliding mechanism. Once the MTOC arrives at the contact site, it oscillates laterally. Microtubules loop through and anchor to a ring-shaped zone (pSMAC) defined by the dense clustering of LFA-1 at the target contact site. Microtubules that run straight between the MTOC and pSMAC and then turn sharply may indicate the action of a microtubule motor such as dynein.
Although the regulation of events in the cell division cycle by calcium or other cations has been the subject of much interest and speculation, experimental studies have been hampered by the difficulty of measuring submicromolar intracellular free calcium concentrations ([Ca2+]i) over an entire cell cycle. We now describe experiments using a new fluorescent calcium chelator, fura-2 (see Fig. 1c for structure), for continuous measurement of [Ca2+]i from fertilization through the first cleavage of individual eggs of the sea urchin Lytechinus pictus. We also show for comparison the results of parthenogenetic activation by ammonia. In addition to the known transient rise of [Ca2+]i at fertilization, further peaks are now revealed during pronuclear migration, nuclear envelope breakdown, the metaphase/anaphase transition and cleavage. Parthenogenetic activation by ammonia also elicits a sustained rise starting at nuclear envelope breakdown.
Continuous measurement and imaging of the intracellular free calcium ion concentration ([Ca2+]i) of mitotic and interphase PtK1 cells was accomplished with the new fluorescent Ca2+ indicator fura-2. No statistically significant difference between basal [Ca2+]i of interphase and mitotic cells was detected. However, mitotic cells showed a rapid elevation of [Ca2+]i from basal levels of 130 nM to 500 to 800 nM at the metaphase-anaphase transition. The [Ca2+]i transient was brief, lasting approximately 20 seconds and the elevated [Ca2+]i appeared uniformly distributed over the entire spindle and central region of the cell. The close temporal association of the [Ca2+]i transient with the onset of anaphase suggests that calcium may have a signaling role in this event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.