The use of hot-melt extrusion for preparing homogeneous API-excipient mixtures is studied for miconazole-PEG-g-PVA [poly(ethylene glycol)-poly(vinyl alcohol) graft copolymer] solid dispersions with a 5 cm(3) table-top, twin-screw corotating microcompounder (DSM Xplore). Phase behavior of PEG-g-PVA, miscibility of miconazole in PEG-g-PVA and the partitioning of miconazole between PEG and PVA amorphous phases are characterized using a combination of modulated DSC, XRPD, and solid-state (1)H and (13)C NMR methods. The (1)H NMR transverse magnetization relaxation (T(2) relaxation) method is used to analyze the phase composition and molecular mobility of the copolymer. The T(2) relaxation decay of pure PEG-g-PVA can be described by four T(2) relaxation components in the temperature range studied. PVA crystallinity is not largely affected by hot-melt extrusion and the presence of the drug. Miconazole preferably resides in the PEG amorphous phase, and its molecules are well dispersed in the PEG-g-PVA matrix using hot-melt extrusion mixing. Miconazole forms amorphous nanoclusters whose average size equals approximately 1.6 nm, indicating solid solution formation (molecular level dispersion) of the drug in the polymer.
Organoclay reinforced poly(lactic acid) (PLA)/poly(vinyl alcohol) (PVA) blend based porous nanocomposite scaffolds are prepared by microcompounding/injection molding and subsequent polymer (PVA)/particle (NaCl) leaching method. The objective of the study is to investigate the effect of clay content on the properties of scaffolds for tissue engineering. It is revealed from X‐ray diffraction and TEM studies that incorporation of PVA to PLA matrix as a polymeric porogen enhance the state of dispersion of clay particles resulting in an exfoliated structure. The porosities of all the scaffolds are higher than 70% and the pores are well‐interconnected as observed by SEM. The addition of clay to the scaffolds improves the compressive modulus. Differential scanning calorimeter analysis shows that Tg of neat‐PLA is shifted to lower values when it is compounded with PVA. As a result, it is demonstrated that the method applied in this work can be a good candidate for production of polymeric scaffolds for tissue engineering applications. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers
Melt intercalation method was applied to produce acrylonitrile-butadiene-styrene/polyamide-6 (ABS/ PA6) blends based organoclay nanocomposites using a conical twin-screw microcompounder. The blend was compatibilized using a maleated olefinic copolymer. The effects of microcompounding conditions such as screw speed, screw rotation-mode (co-or counter-), and material parameters such as blend composition and clay loading level on the morphology of the blends, dispersibility of nanoparticles, and mechanical properties were investigated. Furthermore, corotating screws were modified to achieve elongational flow which is efficient for obtaining dispersive mixing. The morphology was examined by SEM analysis after preferential extraction of the minor phase. Subsequently, the SEM micrographs were quantitatively analyzed using image analyzer software. The morphology of the blends indicated that processing with counter-rotation at a given screw speed yielded coarser morphology than that of processed with corotation. X-ray diffraction analysis showed that highest level of exfoliation is observed with increasing PA6 content, at 200 rpm of screw speed and in corotation mode. Also, the effects of screw speed, screw rotation mode, and screw modification were discussed in terms of XRD responses of the nanocomposites. The aspect ratio of the clay particles which were measured by performing image analysis on TEM micrographs exhibited a variation with processing conditions and they are in accordance with the modulus of the nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.