Enhancement of structure-borne wave energy harvesting is investigated by exploiting metamaterial-based and metamaterial-inspired electroelastic systems. The concepts of wave focusing, localization, and funneling are leveraged to establish novel metamaterial energy harvester (MEH) configurations. The MEH systems transform the incoming structure-borne wave energy into electrical energy by coupling the metamaterial and electroelastic domains. The energy harvesting component of the work employs piezoelectric transduction due to the high power density and ease of application offered by piezoelectric materials. Therefore, in all MEH configurations studied in this work, the metamaterial system is combined with piezoelectric energy harvesting for enhanced electricity generation from waves propagating in elastic structures. Experiments are conducted to validate the dramatic performance enhancement in MEH systems as compared to using the same volume of piezoelectric patch in the absence of the metamaterial component. It is shown that MEH systems can be used for both broadband and tuned wave energy harvesting. The MEH concepts covered in this paper are (1) wave focusing using a metamaterial-inspired parabolic acoustic mirror (for broadband energy harvesting), (2) energy localization using an imperfection in a 2D lattice structure (for tuned energy harvesting), and (3) wave guiding using an acoustic funnel (for narrow-to-broadband energy harvesting). It is shown that MEH systems can boost the harvested power by more than an order of magnitude.
A cantilevered piezoelectric beam is excited in a heating, ventilation and air conditioning (HVAC) flow. This excitation is amplified by the interactions between (a) an aerodynamic fin attached at the end of the piezoelectric cantilever and (b) the vortex shedding downstream from a bluff body placed in the air flow ahead of the fin/cantilever assembly. The positioning of small weights along the fin enables tuning of the energy harvester to operate at resonance for flow velocities from 2 to 5 m s−1, which are characteristic of HVAC ducts. In a 15 cm diameter air duct, power generation of 200 μW for a flow speed of 2.5 m s−1 and power generation of 3 mW for a flow speed of 5 m s−1 was achieved. These power outputs are sufficient to power a wireless sensor node for HVAC monitoring systems or other sensors for smart building technology.
State-of-the-art hydraulic hose and piping systems employ integral sensor nodes for structural health monitoring to avoid catastrophic failures. Energy harvesting in hydraulic systems could enable self-powered wireless sensor nodes for applications such as energy-autonomous structural health monitoring and prognosis. Hydraulic systems inherently have a high energy intensity associated with the mean pressure and flow. Accompanying the mean pressure is the dynamic pressure ripple, which is caused by the action of pumps and actuators. Pressure ripple is a deterministic source with a periodic time-domain behavior conducive to energy harvesting. An energy harvester prototype was designed for generating low-power electricity from pressure ripples. The prototype employed an axially-poled off-the-shelf piezoelectric stack. A housing isolated the stack from the hydraulic fluid while maintaining a mechanical coupling allowing for dynamic-pressure-induced deflection of the stack. The prototype exhibited an off-resonance energy harvesting problem since the fundamental resonance of the piezoelectric stack was much higher than the frequency content of the pressure ripple. The prototype was designed to provide a suitable power output for powering sensors with a maximum output of 1.2 mW. This work also presents electromechanical model simulations and experimental characterization of the piezoelectric power output from the pressure ripple in terms of the force transmitted into the harvester.
Broadband structure-borne wave energy harvesting is reported by wave focusing using an elliptical acoustic mirror (EAM). The EAM is formed by an array of cylindrical stubs mounted along a semi-elliptical path on the surface of a plate. The array back-scatters incoming guided waves and focuses them at the focal location where a piezoelectric energy harvester is located. Multiple scattering simulations and experiments illustrate the broadband focusing characteristics of the EAM. More than an order of magnitude improvement in piezoelectric power generation is documented for an EAM-based energy harvester with respect to a free harvester over the 30-70 kHz frequency range. V
Aerial cargo delivery, also known as airdrop, systems are heavily affected by atmospheric wind conditions. Guided airdrop systems typically employ onboard wind velocity estimation methods to predict the wind in real time as the systems descend, but these methods provide no foresight of the winds near the ground. Unexpected ground winds can result in large errors in landing location, and they can even lead to damage or complete loss of the cargo if the system impacts the ground while traveling downwind. This paper reports on a ground-based mechatronic system consisting of a cup and vane anemometer coupled to a guided airdrop system through a wireless transceiver. The guidance logic running on the airdrop system's onboard autopilot is modified to integrate the anemometer measurements at ground level near the intended landing zone with onboard wind estimates to provide an improved, real-time estimate of the wind profile. The concept was first developed in the framework of a rigorous simulation model and then validated in the flight test. Both simulation and subsequent flight tests with the prototype system demonstrate reductions in the landing position error by more than 30% as well as a complete elimination of potentially dangerous downwind landings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.