Spoken language understanding (SLU) refers to the process of inferring the semantic information from audio signals.While the neural transformers consistently deliver the best performance among the state-of-the-art neural architectures in field of natural language processing (NLP), their merits in a closely related field, i.e., spoken language understanding (SLU) have not beed investigated. In this paper, we introduce an end-toend neural transformer-based SLU model that can predict the variable-length domain, intent, and slots vectors embedded in an audio signal with no intermediate token prediction architecture. This new architecture leverages the self-attention mechanism by which the audio signal is transformed to various subsubspaces allowing to extract the semantic context implied by an utterance. Our end-to-end transformer SLU predicts the domains, intents and slots in the Fluent Speech Commands dataset with accuracy equal to 98.1 %, 99.6 %, and 99.6 %, respectively and outperforms the SLU models that leverage a combination of recurrent and convolutional neural networks by 1.4 % while the size of our model is 25% smaller than that of these architectures. Additionally, due to independent sub-space projections in the self-attention layer, the model is highly parallelizable which makes it a good candidate for on-device SLU.
Although speech recognition has become a widespread technology, inferring emotion from speech signals remains a challenge. Our paper addresses this problem by proposing a quaternion convolutional neural network (QCNN) based speech emotion recognition (SER) model in which Mel-spectrogram features of speech signals are encoded in an RGB quaternion domain. We demonstrate that our QCNN based SER model outperforms other real-valued methods in the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS, 8-classes) dataset, achieving, to the best of our knowledge, state-of-the-art results. The QCNN model also achieves comparable results with state-of-the-art methods in the Interactive Emotional Dyadic Motion Capture (IEMOCAP 4-classes) and Berlin EMO-DB (7-classes) datasets. Specifically, the model achieves an accuracy of 77.87%, 70.46%, and 88.78% for the RAVDESS, IEMOCAP, and EMO-DB datasets, respectively.Additionally, model size results reveal that the quaternion unit structure is significantly better able to encode internal dependencies than real-valued structures.
No abstract
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral and spatial information collected from different microphones are integrated using attention layers. Our multi-channel transformer network mainly consists of three parts: channel-wise self attention layers (CSA), cross-channel attention layers (CCA), and multi-channel encoder-decoder attention layers (EDA). The CSA and CCA layers encode the contextual relationship "within" and "between" channels and across time, respectively. The channel-attended outputs from CSA and CCA are then fed into the EDA layers to help decode the next token given the preceding ones. The experiments show that in a far-field in-house dataset, our method outperforms the baseline single-channel transformer, as well as the super-directive and neural beamformers cascaded with the transformers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.