We prove that products of at most two vector valued Eisenstein series that originate in level 1 span all spaces of cusp forms for congruence subgroups. This can be viewed as an analogue in the level aspect to a result that goes back to Rankin, and Kohnen and Zagier, which focuses on the weight aspect. The main feature of the proof are vector valued Hecke operators. We recover several classical constructions from them, including classical Hecke operators, Atkin-Lehner involutions, and oldforms. As a corollary to our main theorem, we obtain a vanishing condition for modular forms reminiscent of period relations deduced by Kohnen and Zagier in the context their previously mentioned result.
This work considers aspects of almost holomorphic and meromorphic Siegel modular forms from the perspective of physics and mathematics. The first part is concerned with (refined) topological string theory and the direct integration of the holomorphic anomaly equations.Here, a central object to compute higher genus amplitudes, which serve as the generating func-
We prove modularity of formal series of Jacobi forms that satisfy a natural symmetry condition. They are formal analogs of Fourier-Jacobi expansions of Siegel modular forms. From our result and a theorem of Wei Zhang, we deduce Kudla's conjecture on the modularity of generating series of special cycles of arbitrary codimension and for all orthogonal Shimura varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.