Dihydropteroate synthase (H2Pte synthase) is the target of the sulfur‐based antimalarial drugs, which are frequently used in synergistic combination with inhibitors of dihydrofolate reductase (H2folate reductase) to combat chloroquine‐resistant malaria. We have isolated the H2Pte synthase coding sequence of the most pathogenic human parasite Plasmodium falciparum. It forms part of a longer coding sequence, located on chromosome 8, that also specifies 6‐hydroxymethyl‐7,8‐dihydropterin pyrophosphokinase (CH2OH‐H2pterinPP kinase) at its 5′ proximal end. This domain is unusually large, with two long insertions relative to other CH2OH‐H2pterinPP kinase molecules. To investigate a possible genetic basis for clinical resistance to sulfa drugs, we sequenced the complete H2Pte synthase domains from eleven isolates of P. falciparum with diverse geographical origins and levels of sulfadoxine resistance. Overall, point mutations in five positions were observed, affecting four codons. Parasite lines exhibiting high‐level resistance were found to carry either a double mutation, altering both Ser436 and Ala613, or a single mutation affecting Ala581. The mutations at positions 436 and 581 have the same location relative to each of two degenerate repeated amino acid motifs that are conserved across all other known H2Pte synthase molecules. The amino acid alteration at residue 613 is identically positioned relative to a different conserved motif. The fourth amino acid residue (437) affected by mutation, though adjacent to the apparently crucial residue 436, shows no obvious correlation with resistance. Although these mutations have no exact counterparts in any other organism, that at position 581 falls within a region of three amino acids where H2Pte synthase is modified in various ways in a number of sulfonamide‐resistant pathogenic bacteria. Copy‐number analysis indicated that there was no amplification of the H2Pte synthase domain in resistant parasite lines of P. falciparum, compared to sensitive lines.
Sulfadoxine/pyrimethamine (Fansidar) is widely used in Africa for treating chloroquine-resistant falciparum malaria. To clarify how parasite resistance to this combination arises, various lines of Plasmodium falciparum were used to investigate the role of naturally occurring mutations in the target enzyme, dihydropteroate synthetase (DHPS), in the parasite response to sulfadoxine inhibition. An improved drug assay was employed to identify a clear correlation between sulfadoxine-resistance levels and the number of DHPS mutations. Moreover, tight linkage was observed between DHPS mutations and high-level resistance in the 16 progeny of a genetic cross between sulfadoxinesensitive (HB3) and sulfadoxine-resistant (Dd2) parents. However, we also demonstrate a profound influence of exogenous folate on IC 50 values, which, under physiological conditions, may have a major role in determining resistance levels. Importantly, this phenotype does not segregate with dhps genotypes in the cross, but shows complete linkage to the two alleles of the dihydrofolate reductase (dhfr ) gene inherited from the parental lines. However, in unrelated lines, this folate effect correlates less well with DHFR sequence, indicating that the gene responsible may be closely linked to dhfr, rather than dhfr itself. These results have major implications for the acquisition of Fansidar resistance by malaria parasites.
We describe a novel procedure for the immunofluorescent investigation of Plasmodium falciparum. This has allowed us to visualize clearly microtubular structures and their changing conformation through the erythrocytic cell-cycle, to the stage of cytodifferentiation leading to merozoite release. The images of spindle development we observed, together with an analysis of nuclear body numbers in large numbers of parasites, indicate that there is an apparent asynchrony in chromosomal multiplication within a single parasite. Using antibodies specific for post-translational modification of alpha-tubulin, we also demonstrate that the C-terminal tyrosine-containing epitope of P. falciparum alpha-tubulin I is similar to that of other organisms. Lysine-40 in the same molecule, a target for highly specific in vivo acetylation in some organisms, is unmodified in the blood stages we examined here. After in vitro acetylation of this residue, however, the epitope to which it contributes was recognized by antibody, showing that the conformation of this part of the molecule is also conserved, despite a lack of primary sequence homology immediately downstream of the target lysine residue.
Pyrimethamine acts by selectively inhibiting malarial dihydrofolate reductase-thymidylate synthase (DHFR-TS). Resistance in the most important human parasite, Plasmodium falciparum, initially results from an S108N mutation in the DHFR domain, with additional mutation (most commonly C59R or N51I or both) imparting much greater resistance. From a homology model of the 3-D structure of DHFR-TS, rational drug design techniques have been used to design and subsequently synthesize inhibitors able to overcome malarial pyrimethamine resistance. Compared to pyrimethamine (Ki 1.5 nM) with purified recombinant DHFR fromP. falciparum, the Ki value of the m-methoxy analogue of pyrimethamine was 1.07 nM, but against the DHFR bearing the double mutation (C59R + S108N), the Ki values for pyrimethamine and the m-methoxy analogue were 71.7 and 14.0 nM, respectively. The m-chloro analogue of pyrimethamine was a stronger inhibitor of both wild-type DHFR (with Ki 0.30 nM) and the doubly mutant (C59R +S108N) purified enzyme (with Ki 2.40 nM). Growth of parasite cultures of P. falciparum in vitro was also strongly inhibited by these compounds with 50% inhibition of growth occurring at 3.7 microM for the m-methoxy and 0.6 microM for the m-chloro compounds with the K1 parasite line bearing the double mutation (S108N + C59R), compared to 10.2 microM for pyrimethamine. These inhibitors were also found in preliminary studies to retain antimalarial activity in vivo in P. berghei-infected mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.