. Purpose: To evaluate the potential use of decellularized porcine corneas (DPCs) as a carrier matrix for cultivating human corneal cells in tissue engineering. Methods: Corneal cells were isolated from human corneoscleral rims. Porcine corneas were decellularized using hypotonic tris buffer, ethylene diamine tetra‐acetic acid (EDTA, 0.1%), aprotinin (10 KIU/ml) and 0.3% sodium dodecyl sulphate. Haematoxylin–eosin (HE) and 4,6‐diamidino‐2‐phenylindole (DAPI) staining were performed to confirm removal of the corneal cells. Quantitative analysis was performed to determine levels of desoxyribonucleic acid (DNA) using DNA Purification Kit (Fermentas, St. Leon‐Rot, Germany). Alcian blue staining was carried out to analyse the structure of the extracellular matrix (ECM). Corneal stromal cells were injected into the DPCs; limbal corneal epithelial cells and corneal endothelial cells were seeded onto the anterior and posterior surfaces of the DPCs, respectively. Evaluation was undertaken at days 14 and 30. The phenotypical properties of the cultivated corneal cells were investigated using Immunolocalization of type I collagen, keratocan, lumican, cytokeratin 3 (AE5) and type VIII collagen. Results: Haematoxylin–eosin and DAPI staining showed efficient elimination of porcine corneal cells, whereas alcian blue confirmed gross preservation of the ECM. The quantitative analysis of the DNA content showed a significant reduction (mean before decellularization: 75.45 ± 13.71 ng/mg; mean after decellularization: 9.87 ± 2.04 ng/mg, p < 0.001). All three types of corneal cells were efficiently cultured and expanded on the DPCs. Conclusions: Decellularized porcine corneas might serve as a potential scaffold for tissue engineering of the cornea, possibly providing xenogenic substrate for corneal transplantation.
Introduction: The Retro-IDEAL (ILUVIEN Implant for chronic DiabEtic MAcuLar edema) study is a retrospective study designed to assess real-world outcomes achieved with the ILUVIEN® (0.19 mg fluocinolone acetonide (FAc)) in patients with chronic diabetic macular edema (DME) in clinical practices in Germany. Methods: This study was conducted across 16 sites in Germany and involved 81 eyes (63 patients) with persistent or recurrent DME and a prior suboptimal response to a first-line intravitreal therapy (primarily anti-VEGF intravitreal therapies). Results: Patients were followed-up for 30.8 ± 11.3 months (mean ± standard deviation) and had a mean age of 68.0 ± 10.4 years. Best-recorded visual acuity (BRVA) improved by +5.5 letters at month 9 (P ⩽ 0.005, n=56; from a baseline of 49 letters) and this was maintained through to month 30 (P ⩽ 0.05, n = 42). There was a concurrent improvement in central macular thickness with a reduction from 502 µm at baseline to 338 µm at year 1 (P ⩽ 0.0001, n = 43). This effect was sustained to year 3 (i.e. 318 µm; P ⩽ 0.0001, n = 29). Mean intraocular pressure (IOP) remained constant between baseline and year 3 with a peak change of 1.9 mm Hg occurring at year 1. Elevated IOP was observed in a similar
The aim of this study was to investigate the safety and performance of the second generation of an implantable intraocular pressure (IOP) sensor in patients with primary open angle glaucoma (POAG).DESIGN: prospective, noncomparative, open-label, multicenter clinical investigation.METHODS: In this study, patients with POAG, regularly scheduled for cataract surgery, were implanted with a ring-shaped, sulcus-placed, foldable IOP sensor in a single procedure after intraocular lens implantation. Surgical complications as well as adverse events (AEs) during 12 months of follow-up were recorded. At each follow-up visit, a complete ophthalmic examination, including visual acuity, IOP, slit lamp examination, and dilated funduscopy as well as comparative measurements between Goldmann applanation tonometry and the EYEMATE-IO implant were performed.RESULTS: The EYEMATE-IO implant was successfully implanted in 22 patients with few surgical complications and no unexpected device-related AEs. All ocular AEs resolved quickly under appropriate treatment. Comparative measurements showed good agreement between EYEMATE-IO and Goldmann applanation tonometry (GAT) with an intraclass correlation coefficient (ICC(3,k)) of 0.783 (95% confidence interval [CI]: 0.743, 0.817). EYEMATE-IO measurements were higher than GAT, with a mean difference of 3.2 mm Hg (95% CI: 2.8, 3.5 mm Hg).CONCLUSIONS: The EYEMATE-IO sensor was safely implanted in 22 patients and performed reliably until the end of follow-up. This device allows for continual and long-term measurements of IOP.
Cell density and morphology of HCECs on HALCs were similar to those of healthy corneas. Phenotypical properties of HCECs on HALCs imply that the HCEC sheets are capable of maintaining intact barrier and ionic pump functions in vitro. HALCs might, therefore, be recommended as a potential scaffold for ex vivo expansion of HCECs, possibly providing an autologous biologic substrate for therapy of isolated corneal endothelial diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.