We report an organo-molybdenumn oxide bronze that enables the fabrication of high-performance silver window electrodes for top-illuminated solution processed organic photovoltaics without complicating the process of device fabrication. This hybrid material combines the function of wide-band-gap interlayer for efficient hole extraction with the role of metal electrode seed layer, enabling the fabrication of highly transparent, low-sheet-resistance silver window electrodes. Additionally it is also processed from ethanol, which ensures orthogonality with a large range of solution processed organic semiconductors. The key organic component is the low cost small molecule 3-mercaptopropionic acid, which (i) promotes metal film formation and imparts robustness at low metal thickness, (ii) reduces the contact resistance at the Ag/molybdenumn oxide bronze interface, (iii) and greatly improves the film forming properties. Silver electrodes with a thickness of 8 nm deposited by simple vacuum evaporation onto this hybrid interlayer have a sheet resistance as low as 9.7 Ohms per square and mean transparency ∼80% over the wavelength range 400-900 nm without the aid of an antireflecting layer, which makes them well-matched to the needs of organic photovoltaics and applicable to perovskite photovoltaics. The application of this hybrid material is demonstrated in two types of top-illuminated organic photovoltaic devices.
The choice of metals suitable as the reflective substrate electrode for top-illuminated organic photovoltaics (OPVs) is extremely limited. Herein, we report a novel substrate electrode for this class of OPV architecture based on an Al | Cu | AlOx triple-layer structure, which offers a reflectivity comparable to that of Al over the wavelength range 400-900 nm, a work function suitable for efficient electron extraction in OPVs and high stability towards oxidation. In addition to demonstrating the advantage of this composite electrode over Al in model top-illuminated OPVs, we also present the results of a photoelectron spectroscopy study, which show that an oxidised 0.8 nm Al layer deposited by thermal evaporation onto an Al | Cu reflective substrate electrode is sufficient to block oxidation of the underlying Cu by air or during deposition of a ZnO1-x electron-transport layer. This is remarkable given that the self-limiting oxide thickness on Al metal is greater than 2 nm.
We show that for organic photovoltaics supported on a low workfunction reflective electron-extracting electrode, a hole-blocking layer is not required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.