The aim of the research was to characterize the soldering alloy In-Ag-Ti type, and to study the direct soldering of SiC ceramics and copper. The In10Ag4Ti solder has a broad melting interval, which mainly depends on its silver content. The liquid point of the solder is 256.5 • C. The solder microstructure is composed of a matrix with solid solution (In), in which the phases of titanium (Ti 3 In 4) and silver (AgIn 2) are mainly segregated. The tensile strength of the solder is approximately 13 MPa. The strength of the solder increased with the addition of Ag and Ti. The solder bonds with SiC ceramics, owing to the interaction between active In metal and silicon infiltrated in the ceramics. XRD analysis has proven the interaction of titanium with ceramic material during the formation of the new minority phases of titanium silicide-SiTi and titanium carbide-C 5 Ti 8. In and Ag also affect bond formation with the copper substrate. Two new phases were also observed in the bond interphase-(CuAg) 6 In 5 and (AgCu)In 2. The average shear strength of a combined joint of SiC-Cu, fabricated with In10Ag4Ti solder, was 14.5 MPa. The In-Ag-Ti solder type studied possesses excellent solderability with several metallic and ceramic materials.
Nanocomposite AlCrSiN hard coatings were deposited on the cemented carbide substrates with a negative substrate bias voltage within the range of −80 to −120 V using the cathodic arc evaporation system. The effect of variation in the bias voltage on the coating-substrate adhesion and nanohardness was investigated. It was clear that if bias voltage increased, nanohardness increased in the range from −80 V to −120 V. The coating deposited at the bias voltage of −120 V had the highest nanohardness (37.7 ± 1.5 GPa). The samples were prepared by brushing and wet microblasting to finish a surface and prepare the required cutting edge radii for the tool life cutting tests and the coating adhesion observation. The indents after the static Mercedes indentation test were studied by scanning the electron microscope to evaluate the coating-substrate adhesion. The longer time of edge preparation with surface finishing led to a slight deterioration in the adhesion strength of the coating to the substrate. The tool wear of cemented carbide turning inserts was studied on the turning centre during the tool life cutting test. The tested workpiece material was austenitic stainless steel. The cemented carbide turning inserts with larger cutting edge radius were worn out faster during the machining. Meanwhile, the tool life increased when the cutting edge radius was smaller.
A series of Al-Cr-SiN hard coatings were deposited on WC-Co substrates with a negative substrate bias voltage ranging from-50 to-200 V using cathodic arc evaporation system. A Rockwell-C adhesion test demonstrated that excellent adhesion was observed at lower bias voltages of-50 V and-80 V, while further increases in bias voltage up to-200 V led to severe delamination and worsening of the overall adhesion strength. X-ray diffraction and transmission electron microscopy analysis revealed a single phase cubic B1-structure identified as an AlCrN solid solution with a nanocomposite microstructure where cubic AlCrN nanocrystals were embedded in a thin continuous amorphous SiNx matrix. Coatings exhibited a 002-texture evolution that was more pronounced at higher bias voltages (≥-120 V). Stress-induced cracks were observed inside the coatings at high bias voltages (≥-150 V), which resulted in stress relaxation and a decline in the overall residual stresses.
New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti 3 C 2 T x MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305− 355 K, and a voltage resonance at 8 × 10 4 Hz with the relaxation time of 6.5 × 10 6 s was found in the 20−355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL−MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.