Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 A crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor 'bridges' the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.
Heating fullerenes at 650°C under 3000 atmospheres of the noble gases helium, neon, argon, krypton, and xenon introduces these atoms into the fullerene cages in about one in 1000 molecules. A "window" mechanism in which one or more of the carbon-carbon bonds of the cage is broken has been proposed to explain the process. The amount of gas inside the fullerenes can be measured by heating to 1000°C to expel the gases, which can then be measured by mass spectroscopy. Information obtained from the nuclear magnetic resonance spectra of helium-3-labeled fullerenes indicates that the magnetic field inside the cage is altered by aromatic ring current effects. Each higher fullerene isomer and each chemical derivative of a fullerene that has been studied so far has given a distinct helium nuclear magnetic resonance peak.
It is demonstrated that fullerenes, prepared via the standard method (an arc between graphite electrodes in a partial pressure of helium), on heating to high temperatures release (4)He and (3)He. The amount corresponds to one (4)He for every 880,000 fullerene molecules. The (3)He/(4)He isotopic ratio is that of tank helium rather than that of atmospheric helium. These results convincingly show that the helium is inside and that there is no exchange with the atmosphere. The amount found corresponds with a prediction from a simple model based on the expected volume of the cavity. In addition, the temperature dependence for the release of helium implies a barrier about 80 kilocalories per mole. This is much lower than the barrier expected from theory for helium passing through one of the rings in the intact structure. Amechanism involving reversibly breaking one or more bonds to temporarily open a "window" in the cage is proposed. A predicted consequence of this mechanism is the incorporation of other gases while the "window" is open. This was demonstrated through the incorporation of (3)He and neon by heating fullerene in their presence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.