Single-atom catalysts (SACs) are the smallest entities for catalytic reactions with projected high atomic efficiency, superior activity, and selectivity; however, practical applications of SACs suffer from a very low metal loading of 1-2 wt%. Here, a class of SACs based on atomically dispersed transition metals on nitrogen-doped carbon nanotubes (MSA-N-CNTs, where M = Ni, Co, NiCo, CoFe, and NiPt) is synthesized with an extraordinarily high metal loading, e.g., 20 wt% in the case of NiSA-N-CNTs, using a new multistep pyrolysis process. Among these materials, NiSA-N-CNTs show an excellent selectivity and activity for the electrochemical reduction of CO to CO, achieving a turnover frequency (TOF) of 11.7 s at -0.55 V (vs reversible hydrogen electrode (RHE)), two orders of magnitude higher than Ni nanoparticles supported on CNTs.
Magnetic nanoparticles that display high saturation magnetization and high magnetic susceptibility are of great interest for medical applications. Magnetite nanoparticles display strong ferrimagnetic behavior and are less sensitive to oxidation than magnetic transition metal nanoparticles such as cobalt, iron, and nickel. For in vivo applications, well-defined organic coatings are needed to surround the magnetite nanoparticles and prevent any aggregation. The goal of this research was to develop complexes of magnetite nanoparticles coated with well-defined hydrophilic polymers so that they could be dispersed in aqueous fluids. Focal points have included the following: (1) Investigations of polymer systems that bind irreversibly to magnetite at the physiological pH, (2) the design of block copolymers with anchor and tail blocks to enable dispersion in biological fluids, and (3) investigations of copolymer block lengths to maximize the concentration of bound magnetite. Hydrophilic triblock copolymers with controlled concentrations of pendent carboxylic acid binding groups were designed as steric stabilizers for magnetite nanoparticles. These copolymers were comprised of controlled molecular weight poly(ethylene oxide) tail blocks and a central, polyurethane anchor block containing carboxylic acids. Stoichiometric aqueous solutions of FeCl 2 and FeCl 3 were condensed by reaction with NH 4 OH to form magnetite nanoparticles, and then a dichloromethane solution of the block copolymer was added to adsorb the copolymer onto the magnetite surfaces. Stable magnetite dispersions were prepared with all of the triblock copolymers. The polymer-nanomagnetite conjugates described in this paper had a maximum saturation magnetization of 34 emu/g. Magnetization curves showed minimal hysteresis. Powder X-ray diffraction (XRD), selected area electron diffraction (SAED), and high-resolution electron microscopy (HREM) confirmed the magnetite crystal structure. Transmission electron microscopy (TEM) showed that the dispersions contained magnetite particles coated with the polymers with a mean diameter of 8.8 ( S.D. 2.7 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.