We discuss formulations of integer programs with a huge number of variables and their solution by column generation methods, i.e., implicit pricing of nonbasic variables to generate new columns or to prove LP optimality at a node of the branch-and-bound tree. We present classes of models for which this approach decomposes the problem, provides tighter LP relaxations, and eliminates symmetry. We then discuss computational issues and implementation of column generation, branch-and-bound algorithms, including special branching rules and efficient ways to solve the LP relaxation. We also discuss the relationship with Lagrangian duality.
Please scroll down for article-it is on subsequent pages With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.) and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to transform strategic visions and achieve better outcomes. For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org
The branch and bound procedure for solving mixed integer programming (MIP) problems using linear programming relaxations has been used with great success for decades. Over the years, a variety o f r e s e a r c hers have studied ways of making the basic algorithm more e ective. Breakthroughs in the elds of computer hardware, computer software, and mathematics have led to increasing success at solving larger and larger MIP instances. The goal of this paper is to survey many of the results regarding branch a n d bound search strategies and evaluate them again in light of the other advances that have taken place over the years. In addition, novel search strategies are presented and shown to often perform better than those currently used in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.