Fungal infections are increasing worldwide due to the marked rise in immunodeficiencies including AIDS; however, immune responses to fungi are poorly understood. Dectin-1 is the major mammalian pattern recognition receptor for the fungal component zymosan. Dectin-1 represents the prototype of innate non-Toll-like receptors (TLRs) containing immunoreceptor tyrosine-based activation motifs (ITAMs) related to those of adaptive antigen receptors. Here we identify Card9 as a key transducer of Dectin-1 signalling. Although being dispensable for TLR/MyD88-induced responses, Card9 controls Dectin-1-mediated myeloid cell activation, cytokine production and innate anti-fungal immunity. Card9 couples to Bcl10 and regulates Bcl10-Malt1-mediated NF-kappaB activation induced by zymosan. Yet, Card9 is dispensable for antigen receptor signalling that uses Carma1 as a link to Bcl10-Malt1. Thus, our results define a novel innate immune pathway and indicate that evolutionarily distinct ITAM receptors in innate and adaptive immune cells use diverse adaptor proteins to engage selectively the conserved Bcl10-Malt1 module.
Plants are colonized by phylogenetically diverse microorganisms that affect plant growth and health. Representative genome-sequenced culture collections of bacterial isolates from model plants, including Arabidopsis thaliana, have recently been established. These resources provide opportunities for systematic interaction screens combined with genome mining to discover uncharacterized natural products. Here, we report on the biosynthetic potential of 224 strains isolated from the A. thaliana phyllosphere. Genome mining identified more than 1,000 predicted natural product biosynthetic gene clusters (BGCs), hundreds of which are unknown compared to the MIBiG database of characterized BGCs. For functional validation, we used a high-throughput screening approach to monitor over 50,000 binary strain combinations. We observed 725 inhibitory interactions, with 26 strains contributing to the majority of these. A combination of imaging mass spectrometry and bioactivity-guided fractionation of the most potent inhibitor, the BGC-rich Brevibacillus sp. Leaf182, revealed three distinct natural product scaffolds that contribute to the observed antibiotic activity. Moreover, a genome mining-based strategy led to the isolation of a trans-acyltransferase polyketide synthase-derived antibiotic, macrobrevin, which displays an unprecedented natural product structure. Our findings demonstrate that the phyllosphere is a valuable environment for the identification of antibiotics and natural products with unusual scaffolds.
The aerial parts of plants are host to taxonomically structured bacterial communities. Members of the core phyllosphere microbiota can protect Arabidopsis thaliana against foliar pathogens. However, whether plant protection is widespread and to what extent the modes of protection differ among phyllosphere microorganisms is not clear. Here, we present a systematic analysis of plant protection capabilities of the At -LSPHERE, which is a collection of >200 bacterial isolates from Arabidopsis thaliana, against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. In total 224 bacterial leaf isolates were individually assessed for plant protection in a gnotobiotic system. Protection against the pathogen varied with approximately 10% of leaf microbiota strains providing full protection, 10% showing intermediate levels of protection and the remaining 80% not markedly reducing disease phenotypes upon infection. The most protective strains were distributed across different taxonomic groups. Synthetic community experiments revealed additive effects of strains but also that a single strain can confer full protection in a community context. We also identify different mechanisms that contribute to plant protection. Although pattern-triggered immunity co-receptor signaling is involved in protection by a subset of strains, other strains protected in the absence of functional plant immunity receptors BAK1 and BKK1. Using a comparative genomics approach combined with mutagenesis, we reveal that direct bacteria-pathogen interactions contribute to plant protection by Rhizobium Leaf202. This shows that a computational approach based on the data provided can be used to identify genes of the microbiota that are important for plant protection.
Within the area of applied harmonic analysis, various multiscale systems such as wavelets, ridgelets, curvelets, and shearlets have been introduced and successfully applied. The key property of each of those systems are their (optimal) approximation properties in terms of the decay of the L 2 -error of the best N -term approximation for a certain class of functions. In this paper, we introduce the general framework of α-molecules, which encompasses most multiscale systems from applied harmonic analysis, in particular, wavelets, ridgelets, curvelets, and shearlets as well as extensions of such with α being a parameter measuring the degree of anisotropy, as a means to allow a unified treatment of approximation results within this area. Based on an α-scaled index distance, we first prove that two systems of α-molecules are almost orthogonal. This leads to a general methodology to transfer approximation results within this framework, provided that certain consistency and time-frequency localization conditions of the involved systems of α-molecules are satisfied. We finally utilize these results to enable the derivation of optimal sparse approximation results for a specific class of cartoonlike functions by sufficient conditions on the 'control' parameters of a system of α-molecules.
The very first alkaline-earth fluorooxoborate Ba[B O F ] was synthesised by solid state methods starting from Ba(BF ) , β-BaB O , and B O . The crystal structure derived from single-crystal X-ray diffraction (P2 /n, a=6.6384(2) Å, b=7.6733(3) Å, c=11.3385(4) Å, β=91.281(2)°, Z=4, R =0.0269, R =0.018, wR =0.034) comprises layers of BO F tetrahedra condensed through triangular BO units according to the descriptor 2Δ2□:<Δ2□>Δ. The extraordinary thirteen-fold coordination of barium by oxygen and fluorine leads to interesting optical properties of a sample doped with divalent europium, where a 4f→4f emission was recorded around 359 nm together with a broad emission band of a 5d→4f emission peaking at 366 nm. The compound is further characterised by IR-, Raman-, and solid-state NMR-spectroscopic methods. Moreover, DFT calculations as well as TGA and DSC measurements were performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.