IT HAS long been conjectured that surgery on a knot in S3 yields a reducible 3-manifold if and only if the knot is cabled, with the cabling annulus part of the reducing sphere (cf. [7.8, 9, 10, 111). One may regard the Poenaru conjecture (solved in [S]) as a special case of the above. More generally, one can ask when surgery on a knot in an arbitary 3-manifold A4 produces a reducible 3-manifold M'. But this problem is too complex, since, dually, it asks which knots in which manifolds arise from surgery on reducible 3-manifolds. In this paper we are able to show, approximately, that if M itself either contains a summand not a rational homology sphere or is a-reducible, and M' is reducible, then k must have been cabled and the surgery is via the slope of the cabling annulus. Thus the result stops short of proving the conjecture for M = S3, but (see below) does suffice to prove the conjecture for satellite knots. The results here are broader than this; for a context recall the main result of [3]: GABAI'S THEOREM. Let k be a knot in M = D2 x S' with nonzero wrapping number. If_ci' is a manifold obtained by non-trivial surgery on k then one of the following must hold: (1) M = D2 x S' = M' and both k and k' are 0 or l-bridge braids. (2) M' = WI # W,, where W2 is a closed 3-manifold and H, (W,) isjnite and non-tritial. (3) M' is irreducible and aM ' is incompressible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.