In schizophrenia, consistent structural and functional changes have been demonstrated for the insula including aberrant salience processing, which is critical for psychosis. Interactions within and across default mode and central executive network (DMN, CEN) are impaired in schizophrenia. The question arises whether these 2 types of changes are related. Recently, the anterior insula has been demonstrated to control DMN/CEN interactions. We hypothesized that aberrant insula and DMN/CEN activity in schizophrenia is associated with an impaired dependence of DMN/CEN interactions on anterior insular salience network (SN) activity. Eighteen patients with schizophrenia during psychosis and 20 healthy controls were studied by resting-state-fMRI and psychometric examination. High-model-order independent component analysis of fMRI data revealed spatiotemporal patterns of synchronized ongoing blood-oxygenation-level-dependent (BOLD) activity including SN, DMN, and CEN. Scores of functional and time-lagged connectivity across networks' time courses were calculated. Connectivity scores and spatial network maps were compared between groups and related with patients' hallucination and delusion severity. Spatial BOLD-synchronicity was altered in patients' SN, DMN, and CEN, including decreased activity in the right anterior insula (rAI). Patients' functional connectivity between DMN and CEN was increased and related with hallucinations severity. Importantly, patients' time-lagged connectivity between SN and DMN/CEN was reduced, and decreased rAI activity of the SN was associated with both hallucinations and increased functional connectivity between DMN and CEN. Data provide evidence for an aberrant dependence of DMN/CEN interactions on anterior insular SN activity, linking impaired insula, DMN, CEN activity, and psychosis in schizophrenia.
Major depressive disorder (MDD) is characterized by altered intrinsic functional connectivity within (intra-iFC) intrinsic connectivity networks (ICNs), such as the Default Mode- (DMN), Salience- (SN) and Central Executive Network (CEN). It has been proposed that aberrant switching between DMN-mediated self-referential and CEN-mediated goal-directed cognitive processes might contribute to MDD, possibly explaining patients' difficulties to disengage the processing of self-focused, often negatively biased thoughts. Recently, it has been shown that the right anterior insula (rAI) within the SN is modulating DMN/CEN interactions. Since structural and functional alterations within the AI have been frequently reported in MDD, we hypothesized that aberrant intra-iFC in the SN's rAI is associated with both aberrant iFC between DMN and CEN (inter-iFC) and severity of symptoms in MDD. Twenty-five patients with MDD and 25 healthy controls were assessed using resting-state fMRI (rs-fMRI) and psychometric examination. High-model-order independent component analysis (ICA) of rs-fMRI data was performed to identify ICNs including DMN, SN, and CEN. Intra-iFC within and inter-iFC between distinct subsystems of the DMN, SN, and CEN were calculated, compared between groups and correlated with the severity of symptoms. Patients with MDD showed (1) decreased intra-iFC within the SN's rAI, (2) decreased inter-iFC between the DMN and CEN, and (3) increased inter-iFC between the SN and DMN. Moreover, decreased intra-iFC in the SN's rAI was associated with severity of symptoms and aberrant DMN/CEN interactions, with the latter losing significance after correction for multiple comparisons. Our results provide evidence for a relationship between aberrant intra-iFC in the salience network's rAI, aberrant DMN/CEN interactions and severity of symptoms, suggesting a link between aberrant salience mapping, abnormal coordination of DMN/CEN based cognitive processes and psychopathology in MDD.
Poor semen parameters are common in male CAH patients. TARTs, most likely reflecting undertreatment, as well as inhibin B are important indicators of fecundity. On the other hand, long-term glucocorticoid overtreatment also seems to contribute to low semen quality.
In major depressive disorder, depressive episodes reoccur in ∼60% of cases; however, neural mechanisms of depressive relapse are poorly understood. Depressive episodes are characterized by aberrant topology of the brain's intrinsic functional connectivity network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothesized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25 depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise Pearson's correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods, resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somatosensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network topology was associated with the number of episodes. Results were controlled for effects of total grey matter volume, medication, and total disease duration. This finding provides first evidence that in major depressive disorder aberrant topology of the right putamen's intrinsic connectivity pattern is associated with the course of depressive episodes, independently of current symptoms, medication status and disease duration. Data suggest that the reorganization of striatal connectivity may interact with the course of episodes in depression thereby contributing to depressive relapse risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.